-
Notifications
You must be signed in to change notification settings - Fork 0
/
op_adam_lop_adam.py
114 lines (89 loc) · 5.32 KB
/
op_adam_lop_adam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import math
import torch
from torch.optim.optimizer import Optimizer
class op_Adam_lop_Adam(Optimizer):
"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
hypergrad_lr (float, optional): hypergradient learning rate for the online
tuning of the learning rate, introduced in the paper
`Online Learning Rate Adaptation with Hypergradient Descent`_
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _Online Learning Rate Adaptation with Hypergradient Descent:
https://openreview.net/forum?id=BkrsAzWAb
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), lr_betas=(0.9,0.999), lr_eps=1e-8, eps=1e-8,
weight_decay=0, hypergrad_lr=1e-8):
defaults = dict(lr=lr, betas=betas, eps=eps, lr_betas=lr_betas, lr_eps=lr_eps,
weight_decay=weight_decay, hypergrad_lr=hypergrad_lr)
super(op_Adam_lop_Adam, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('op_Adam_lop_Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
# Exponential moving average of hypergradient values
state['exp_avg_h'] = grad.new_tensor(0)
# Exponential moving average of squared hypergradient values
state['exp_avg_h_sq'] = grad.new_tensor(0)
# References and beta1, beta2 coefficients for Adam
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
# References and beta1_h, beta2_h coefficients, in Hypergradient Adam (HD Adam) for the learning rate
exp_avg_h, exp_avg_h_sq = state['exp_avg_h'], state['exp_avg_h_sq']
beta1_h, beta2_h = group['lr_betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
if state['step'] > 1:
prev_bias_correction1 = 1 - beta1 ** (state['step'] - 1)
prev_bias_correction2 = 1 - beta2 ** (state['step'] - 1)
# Hypergradient for Adam optimizer:
h = torch.dot(grad.view(-1), torch.div(exp_avg, exp_avg_sq.sqrt().add_(group['eps'])).view(-1)) * math.sqrt(prev_bias_correction2) / prev_bias_correction1
h = -h
# Hypergradient Adam (HD Adam) for the learning rate:
exp_avg_h.mul_(beta1_h).add_(1 - beta1_h, h)
exp_avg_h_sq.mul_(beta2_h).addcmul_(1 - beta2_h, h, h)
denom_ = exp_avg_h_sq.sqrt().add_(group['lr_eps'])
#denom_ = torch.sum(exp_avg_sq).add_(group['lr_eps'])
bias_correction1_ = 1 - beta1_h ** state['step']
bias_correction2_ = 1 - beta2_h ** state['step']
step_size_ = group['hypergrad_lr'] * math.sqrt(bias_correction2_) / bias_correction1_
group['lr'] = group['lr'] - step_size_ * exp_avg_h / denom_
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
return loss