-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo_image.py
executable file
·425 lines (342 loc) · 20.5 KB
/
demo_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import tensorflow as tf
import os
import argparse
import cv2
import matplotlib.pyplot as plt
import math
import time
import numpy as np
import util
from config_reader import config_reader
from config import COCOSourceConfig, GetConfig
from scipy.ndimage.filters import gaussian_filter
from posenet.mymodel3 import get_testing_model
from keras.utils.training_utils import multi_gpu_model
from keras import backend as K
K.set_learning_phase(1)
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
limbSeq = [[1, 0], [1, 14], [1, 15], [1, 16], [1, 17], [0, 14], [0, 15], [14, 16], [15, 17],
[1, 2], [2, 3], [3, 4], [1, 5], [5, 6], [6, 7], [1, 8], [8, 9],
[9, 10], [1, 11], [11, 12], [12, 13], [8, 11], [2, 16], [5, 17]]
mapIdx = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11], [12, 13], [14, 15], [16, 17], [18, 19], [20, 21], [22, 23],
[24, 25], [26, 27], [28, 29], [30, 31], [32, 33], [34, 35], [36, 37], [38, 39], [40, 41], [42, 43], [44, 45],
[46, 47]]
# visualize
colors = [[ 128, 114, 250], [130, 238, 238], [48, 167, 238], [180, 105, 255], [255, 0, 0], [255, 85, 0], [255, 170, 0],
[255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], [255, 0, 170],
[255, 0, 85], [193, 193, 255], [106, 106, 255], [20, 147, 255]]
dt_gt_mapping = {0: 0, 1: None, 2: 6, 3: 8, 4: 10, 5: 5, 6: 7, 7: 9, 8: 12, 9: 14, 10: 16, 11: 11, 12: 13, 13: 15,
14: 2, 15: 1, 16: 4, 17: 3, 18: None}
def show_color_vector(oriImg, paf_avg, heatmap_avg):
hsv = np.zeros_like(oriImg)
hsv[..., 1] = 255
mag, ang = cv2.cartToPolar(paf_avg[:, :, 16], 1.5 * paf_avg[:, :, 16])
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
limb_flow = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
plt.imshow(oriImg[:, :, [2, 1, 0]])
plt.imshow(limb_flow, alpha=.5)
plt.title('[a body part heatmap] \n close this window and do next')
plt.show()
plt.imshow(oriImg[:, :, [2, 1, 0]]) # show a keypoint
plt.imshow(heatmap_avg[:, :, 2], alpha=.5)
plt.title('[a keypoint heatmap] \n close this window and do next')
plt.show()
def process(input_image, params, model_params, heat_layers, paf_layers):
oriImg = cv2.imread(input_image) # B,G,R order.
multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']] # 按照图片高度进行缩放
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], heat_layers)) # fixme if you change the number of keypoints
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], paf_layers))
multiplier = multiplier
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) # cv2.INTER_CUBIC
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_params['stride'],
model_params['padValue'])
input_img = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]),
(3, 0, 1, 2)) # required shape (1, width, height, channels)
output_blobs = model_single.predict(input_img)
# extract outputs, resize, and remove padding
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps. notice: 模型定义中paf是branch1,heatmap是branch2
heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_avg = heatmap_avg + heatmap / len(multiplier)
paf_avg = paf_avg + paf / len(multiplier)
all_peaks = []
peak_counter = 0
# --------------------------------------------------------------------------------------- #
# ------------------------ show the limb and foreground channel -----------------------#
# --------------------------------------------------------------------------------------- #
show_color_vector(oriImg, paf_avg, heatmap_avg)
# --------------------------------------------------------------------------------------- #
# ####################################################################################### #
# ------------------------- find keypoints ---------------------------------------------#
# ####################################################################################### #
# --------------------------------------------------------------------------------------- #
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map = gaussian_filter(map_ori, sigma=3) # fixme: use gaussian blure?
# map = map_ori
# map up 是值
map_up = np.zeros(map.shape)
map_up[1:, :] = map[:-1, :]
map_down = np.zeros(map.shape) # todo: NMS with a sliding window of 3*3
map_down[:-1, :] = map[1:, :]
map_left = np.zeros(map.shape)
map_left[:, 1:] = map[:, :-1]
map_right = np.zeros(map.shape)
map_right[:, :-1] = map[:, 1:]
map_left_up = np.zeros(map.shape)
map_left_up[1:, :] = map_left[:-1, :]
map_right_up = np.zeros(map.shape)
map_right_up[1:, :] = map_right[:-1, :]
map_left_down = np.zeros(map.shape)
map_left_down[:-1, :] = map_left[1:, :]
map_right_down = np.zeros(map.shape)
map_right_down[:-1, :] = map_right[1:, :]
peaks_binary = np.logical_and.reduce((map >= map_left, map >= map_right,
map >= map_up, map >= map_down, map >= map_right_up,
map >= map_right_down,
map >= map_left_up, map >= map_left_down,
map > params['thre1'])) # fixme: finetue it
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]))
# np.nonzero: Return the indices of the elements that are non-zero
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] # 列表解析式,生产的是list
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
# --------------------------------------------------------------------------------------- #
# ####################################################################################### #
# ----------------------------- find connections -----------------------------------------#
# ####################################################################################### #
# --------------------------------------------------------------------------------------- #
connection_all = []
special_k = []
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, mapIdx[k][0] // 2]
candA = all_peaks[limbSeq[k][0]]
candB = all_peaks[limbSeq[k][1]]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if (nA != 0 and nB != 0):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
mid_num = max(int(norm), 10)
# failure case when 2 body parts overlaps
if norm == 0:
# https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation/issues/54
continue
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num),
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
limb_response = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0]))] \
for I in range(len(startend))])
score_midpts = limb_response
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(0.5 * oriImg.shape[0] / norm - 1, 0)
# The term of sum(score_midpts)/len(score_midpts), see the link below.
# https://github.com/michalfaber/keras_Realtime_Multi-Person_Pose_Estimation/issues/48
criterion1 = len(np.nonzero(score_midpts > params['thre2'])[0]) > params['connect_ration'] * len(score_midpts) # fixme: tune 手动调整, 本来是 > 0.8*len
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append([i, j, score_with_dist_prior, norm,
0.5 * score_with_dist_prior + 0.25 * candA[i][2] + 0.25 * candB[j][2]])
# How to undersatand the criterion?
connection_candidate = sorted(connection_candidate, key=lambda x: x[4], reverse=True)
connection = np.zeros((0, 6))
for c in range(len(connection_candidate)):
i, j, s, limb_len = connection_candidate[c][0:4]
if (i not in connection[:, 3] and j not in connection[:, 4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j, limb_len]])
if (len(connection) >= min(nA, nB)):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# --------------------------------------------------------------------------------------- #
# ####################################################################################### #
# --------------------------------- find people ------------------------------------------#
# ####################################################################################### #
# --------------------------------------------------------------------------------------- #
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20, 2))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k])
for i in range(len(connection_all[k])):
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)):
if subset[j][indexA][0].astype(int) == (partAs[i]).astype(int) or subset[j][indexB][0].astype(int) == partBs[i].astype(int):
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB][0].astype(int) == -1 and \
params['len_rate'] * subset[j][-1][1] > connection_all[k][i][-1]:
subset[j][indexB][0] = partBs[i]
subset[j][indexB][1] = connection_all[k][i][2]
subset[j][-1][0] += 1
# last number in each row is the total parts number of that person
subset[j][-2][0] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# candidate的格式为: (343, 490, 0.8145177364349365, 27), ....
subset[j][-1][1] = max(connection_all[k][i][-1], subset[j][-1][1])
# the second last number in each row is the score of the overall configuration
elif subset[j][indexB][0].astype(int) != partBs[i].astype(int):
if subset[j][indexB][1] >= connection_all[k][i][2]:
pass
else:
if params['len_rate'] * subset[j][-1][1] <= connection_all[k][i][-1]:
continue
subset[j][-2][0] -= candidate[subset[j][indexB][0].astype(int), 2] + subset[j][indexB][1]
subset[j][indexB][0] = partBs[i]
subset[j][indexB][1] = connection_all[k][i][2]
subset[j][-2][0] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
subset[j][-1][1] = max(connection_all[k][i][-1], subset[j][-1][1])
else:
pass
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership1 = ((subset[j1][..., 0] >= 0).astype(int))[:-2] # 用[:,0]也可
membership2 = ((subset[j2][..., 0] >= 0).astype(int))[:-2]
membership = membership1 + membership2
if len(np.nonzero(membership == 2)[0]) == 0: # if found 2 and disjoint, merge them
min_limb1 = np.min(subset[j1, :-2, 1][membership1 == 1])
min_limb2 = np.min(subset[j2, :-2, 1][membership2 == 1])
min_tolerance = min(min_limb1, min_limb2)
if connection_all[k][i][2] < params['connection_tole'] * min_tolerance or params['len_rate'] * subset[j1][-1][1] <= connection_all[k][i][-1]:
# todo: finetune the tolerance of connection
continue #
subset[j1][:-2][...] += (subset[j2][:-2][...] + 1)
subset[j1][-2:][:, 0] += subset[j2][-2:][:, 0]
subset[j1][-2][0] += connection_all[k][i][2]
subset[j1][-1][1] = max(connection_all[k][i][-1], subset[j1][-1][1])
subset = np.delete(subset, j2, 0)
else:
if connection_all[k][i][0] in subset[j1, :-2, 0]:
c1 = np.where(subset[j1, :-2, 0] == connection_all[k][i][0])
c2 = np.where(subset[j2, :-2, 0] == connection_all[k][i][1])
else:
c1 = np.where(subset[j1, :-2, 0] == connection_all[k][i][1])
c2 = np.where(subset[j2, :-2, 0] == connection_all[k][i][0])
c1 = int(c1[0])
c2 = int(c2[0])
assert c1 != c2, "an candidate keypoint is used twice, shared by two people"
if connection_all[k][i][2] < subset[j1][c1][1] and connection_all[k][i][2] < subset[j2][c2][1]:
continue # the trick here is useful
small_j = j1
big_j = j2
remove_c = c1
if subset[j1][c1][1] > subset[j2][c2][1]:
small_j = j2
big_j = j1
remove_c = c2
subset[small_j][-2][0] -= candidate[subset[small_j][remove_c][0].astype(int), 2] + subset[small_j][remove_c][1]
subset[small_j][remove_c][0] = -1 # todo
subset[small_j][remove_c][1] = -1
subset[small_j][-1][0] -= 1
elif not found and k < 24:
row = -1 * np.ones((20, 2))
row[indexA][0] = partAs[i]
row[indexA][1] = connection_all[k][i][2]
row[indexB][0] = partBs[i]
row[indexB][1] = connection_all[k][i][2]
row[-1][0] = 2
row[-1][1] = connection_all[k][i][-1]
row[-2][0] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
row = row[np.newaxis, :, :] # 为了进行concatenate,需要插入一个轴
subset = np.concatenate((subset, row), axis=0)
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1][0] < 4 or subset[i][-2][0] / subset[i][-1][0] < 0.45:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
canvas = cv2.imread(input_image) # B,G,R order
# canvas = oriImg
keypoints = []
for s in subset[..., 0]:
keypoint_indexes = s[:18]
person_keypoint_coordinates = []
for index in keypoint_indexes:
if index == -1:
X, Y = 0, 0
else:
X, Y = candidate[index.astype(int)][:2]
person_keypoint_coordinates.append((X, Y))
person_keypoint_coordinates_coco = [None] * 17
for dt_index, gt_index in dt_gt_mapping.items():
if gt_index is None:
continue
person_keypoint_coordinates_coco[gt_index] = person_keypoint_coordinates[dt_index]
keypoints.append((person_keypoint_coordinates_coco, 1 - 1.0 / s[-2])) # s[19] is the score
for i in range(len(keypoints)):
print('the {}th keypoint detection result is : '.format(i), keypoints[i])
draw_list = [0] + list(range(5, 22))
for i in draw_list:
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i])][..., 0]
if -1 in index:
continue
# 在上一个cell中有 canvas = cv2.imread(test_image) # B,G,R order
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), 3), int(angle), 0,
360, 1)
cv2.circle(cur_canvas, (int(Y[0]), int(X[0])), 4, color=[0, 0, 0], thickness=2)
cv2.circle(cur_canvas, (int(Y[1]), int(X[1])), 4, color=[0, 0, 0], thickness=2)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, default='try_image/tokyo2.jpg', help='input image') # required=True
parser.add_argument('--output', type=str, default='result.jpg', help='output image')
parser.add_argument('--model', type=str, default='training/cpu_weights/cpu_model.h5',
help='path to the weights file')
config = GetConfig('Canonical')
args = parser.parse_args()
input_image = args.image
output = args.output
keras_weights_file = args.model
tic = time.time()
print('start processing...')
# with tf.device("/cpu:0"):
model_single = get_testing_model(np_branch1=config.paf_layers, np_branch2=config.heat_layers+1, stages=3)
model_single.load_weights(keras_weights_file)
# print(model_single.get_weights()[-1].shape)
print('---------- the weight has been loaded ----------------')
# load config
params, model_params = config_reader()
tic = time.time()
# generate image with body parts
canvas = process(input_image, params, model_params, config.heat_layers+1, config.paf_layers) # fixme: background + 1
toc = time.time()
print('processing time is %.5f' % (toc - tic))
cv2.namedWindow("press the keyboard to finish", cv2.WINDOW_AUTOSIZE) # cv2.WINDOW_NORMAL 自动适合的窗口大小
cv2.imshow("press the keyboard to finish", canvas)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite(output, canvas)