训练PPO出现问题:ValueError: Target module ModuleDict( (default): Identity() (reward): Identity() ) is not supported. Currently, only the following modules are supported: torch.nn.Linear
, torch.nn.Embedding
, torch.nn.Conv2d
, transformers.pytorch_utils.Conv1D
.
#6373
Labels
pending
This problem is yet to be addressed
Reminder
System Info
Reward模型训练正常,PPO训练出现如下错误:
ValueError: Target module ModuleDict( (default): Identity() (reward): Identity() ) is not supported. Currently, only the following modules are supported:
torch.nn.Linear
,torch.nn.Embedding
,torch.nn.Conv2d
,transformers.pytorch_utils.Conv1D
.Reproduction
Reward:
model
model_name_or_path: Qwen/Qwen2-VL-2B-Instruct/
method
stage: rm
do_train: true
finetuning_type: lora
lora_target: all
dataset
dataset: merge_RLHF
template: qwen2_vl
cutoff_len: 2000
image_resolution: 480
overwrite_cache: true
preprocessing_num_workers: 16
output
output_dir: 12_15_RW
logging_steps: 1
save_steps: 10
plot_loss: true
overwrite_output_dir: true
train
per_device_train_batch_size: 1
gradient_accumulation_steps: 4
learning_rate: 5.0e-5
num_train_epochs: 2
lr_scheduler_type: cosine
warmup_ratio: 0.1
weight_decay: 0.1
bf16: true
ddp_timeout: 180000000
flash_attn: fa2
generate
max_new_tokens: 3000
PPO:
model
model_name_or_path: Qwen/Qwen2-VL-2B-Instruct/
reward_model: 12_15_RW/checkpoint-10
method
stage: ppo
do_train: true
finetuning_type: lora
lora_target: all
dataset
dataset: merge_SFT
template: qwen2_vl
cutoff_len: 2000
image_resolution: 480
overwrite_cache: true
preprocessing_num_workers: 16
output
output_dir: XXXX
logging_steps: 1
save_steps: 10
plot_loss: true
overwrite_output_dir: true
train
per_device_train_batch_size: 1
gradient_accumulation_steps: 4
learning_rate: 5.0e-5
num_train_epochs: 2
lr_scheduler_type: cosine
warmup_ratio: 0.1
weight_decay: 0.1
bf16: true
ddp_timeout: 180000000
generate
max_new_tokens: 3000
top_k: 0
top_p: 0.9
Expected behavior
No response
Others
No response
The text was updated successfully, but these errors were encountered: