-
Notifications
You must be signed in to change notification settings - Fork 0
/
ispc.cpp
1098 lines (1007 loc) · 34.8 KB
/
ispc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2010-2014, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file ispc.cpp
@brief ispc global definitions
*/
#include "ispc.h"
#include "module.h"
#include "util.h"
#include "llvmutil.h"
#include <stdio.h>
#ifdef ISPC_IS_WINDOWS
#include <windows.h>
#include <direct.h>
#define strcasecmp stricmp
#else
#include <sys/types.h>
#include <unistd.h>
#endif
#if defined(LLVM_3_1) || defined(LLVM_3_2)
#include <llvm/LLVMContext.h>
#include <llvm/Module.h>
#include <llvm/Instructions.h>
#else
#include <llvm/IR/LLVMContext.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Instructions.h>
#endif
#if defined(LLVM_3_5)
#include <llvm/IR/DebugInfo.h>
#include <llvm/IR/DIBuilder.h>
#else
#include <llvm/DebugInfo.h>
#include <llvm/DIBuilder.h>
#endif
#include <llvm/Support/Dwarf.h>
#include <llvm/Target/TargetMachine.h>
#include <llvm/Target/TargetOptions.h>
#if defined(LLVM_3_1)
#include <llvm/Target/TargetData.h>
#elif defined(LLVM_3_2)
#include <llvm/DataLayout.h>
#else // LLVM 3.3+
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/Attributes.h>
#endif
#include <llvm/Support/TargetRegistry.h>
#include <llvm/Support/TargetSelect.h>
#include <llvm/Support/Host.h>
Globals *g;
Module *m;
///////////////////////////////////////////////////////////////////////////
// Target
#if !defined(ISPC_IS_WINDOWS) && !defined(__arm__)
static void __cpuid(int info[4], int infoType) {
__asm__ __volatile__ ("cpuid"
: "=a" (info[0]), "=b" (info[1]), "=c" (info[2]), "=d" (info[3])
: "0" (infoType));
}
/* Save %ebx in case it's the PIC register */
static void __cpuidex(int info[4], int level, int count) {
__asm__ __volatile__ ("xchg{l}\t{%%}ebx, %1\n\t"
"cpuid\n\t"
"xchg{l}\t{%%}ebx, %1\n\t"
: "=a" (info[0]), "=r" (info[1]), "=c" (info[2]), "=d" (info[3])
: "0" (level), "2" (count));
}
#endif // !ISPC_IS_WINDOWS && !__ARM__
#if !defined(__arm__)
static bool __os_has_avx_support() {
#if defined(ISPC_IS_WINDOWS)
// Check if the OS will save the YMM registers
unsigned long long xcrFeatureMask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
return (xcrFeatureMask & 6) == 6;
#else // !defined(ISPC_IS_WINDOWS)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
int rEAX, rEDX;
__asm__ __volatile__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0));
return (rEAX & 6) == 6;
#endif // !defined(ISPC_IS_WINDOWS)
}
#endif // !__arm__
static const char *
lGetSystemISA() {
#ifdef __arm__
return "neon-i32x4";
#else
int info[4];
__cpuid(info, 1);
if ((info[2] & (1 << 28)) != 0 &&
__os_has_avx_support()) { // AVX
// AVX1 for sure....
// Ivy Bridge?
if ((info[2] & (1 << 29)) != 0 && // F16C
(info[2] & (1 << 30)) != 0) { // RDRAND
// So far, so good. AVX2?
// Call cpuid with eax=7, ecx=0
int info2[4];
__cpuidex(info2, 7, 0);
if ((info2[1] & (1 << 5)) != 0)
return "avx2-i32x8";
else
return "avx1.1-i32x8";
}
// Regular AVX
return "avx1-i32x8";
}
else if ((info[2] & (1 << 19)) != 0)
return "sse4-i32x4";
else if ((info[3] & (1 << 26)) != 0)
return "sse2-i32x4";
else {
Error(SourcePos(), "Unable to detect supported SSE/AVX ISA. Exiting.");
exit(1);
}
#endif
}
static const char *supportedCPUs[] = {
#ifdef ISPC_ARM_ENABLED
// FIXME: LLVM supports a ton of different ARM CPU variants--not just
// cortex-a9 and a15. We should be able to handle any of them that also
// have NEON support.
"cortex-a9", "cortex-a15",
#endif
"atom", "penryn", "core2", "corei7", "corei7-avx"
#if !defined(LLVM_3_1)
, "core-avx-i", "core-avx2"
#endif // LLVM 3.2+
#if !defined(LLVM_3_1) && !defined(LLVM_3_2) && !defined(LLVM_3_3)
, "slm"
#endif // LLVM 3.4+
};
Target::Target(const char *arch, const char *cpu, const char *isa, bool pic) :
m_target(NULL),
m_targetMachine(NULL),
#if defined(LLVM_3_1)
m_targetData(NULL),
#else
m_dataLayout(NULL),
#endif
m_valid(false),
m_isa(SSE2),
m_arch(""),
m_is32Bit(true),
m_cpu(""),
m_attributes(""),
#if !defined(LLVM_3_1) && !defined(LLVM_3_2)
m_tf_attributes(NULL),
#endif
m_nativeVectorWidth(-1),
m_nativeVectorAlignment(-1),
m_dataTypeWidth(-1),
m_vectorWidth(-1),
m_generatePIC(pic),
m_maskingIsFree(false),
m_maskBitCount(-1),
m_hasHalf(false),
m_hasRand(false),
m_hasGather(false),
m_hasScatter(false),
m_hasTranscendentals(false),
m_hasTrigonometry(false),
m_hasRsqrtd(false),
m_hasRcpd(false)
{
if (isa == NULL) {
if (cpu != NULL) {
// If a CPU was specified explicitly, try to pick the best
// possible ISA based on that.
if (!strcmp(cpu, "core-avx2"))
isa = "avx2-i32x8";
#ifdef ISPC_ARM_ENABLED
else if (!strcmp(cpu, "cortex-a9") ||
!strcmp(cpu, "cortex-a15"))
isa = "neon-i32x4";
#endif
else if (!strcmp(cpu, "core-avx-i"))
isa = "avx1.1-i32x8";
else if (!strcmp(cpu, "sandybridge") ||
!strcmp(cpu, "corei7-avx"))
isa = "avx1-i32x8";
else if (!strcmp(cpu, "corei7") ||
!strcmp(cpu, "penryn") ||
!strcmp(cpu, "slm"))
isa = "sse4-i32x4";
else
isa = "sse2-i32x4";
Warning(SourcePos(), "No --target specified on command-line. "
"Using ISA \"%s\" based on specified CPU \"%s\".", isa,
cpu);
}
else {
// No CPU and no ISA, so use CPUID to figure out what this CPU
// supports.
isa = lGetSystemISA();
Warning(SourcePos(), "No --target specified on command-line. "
"Using default system target \"%s\".", isa);
}
}
if (arch == NULL) {
#ifdef ISPC_ARM_ENABLED
if (!strncmp(isa, "neon", 4))
arch = "arm";
else
#endif
arch = "x86-64";
}
bool error = false;
// Make sure the target architecture is a known one; print an error
// with the valid ones otherwise.
for (llvm::TargetRegistry::iterator iter = llvm::TargetRegistry::begin();
iter != llvm::TargetRegistry::end(); ++iter) {
if (std::string(arch) == iter->getName()) {
this->m_target = &*iter;
break;
}
}
if (this->m_target == NULL) {
fprintf(stderr, "Invalid architecture \"%s\"\nOptions: ", arch);
llvm::TargetRegistry::iterator iter;
for (iter = llvm::TargetRegistry::begin();
iter != llvm::TargetRegistry::end(); ++iter)
fprintf(stderr, "%s ", iter->getName());
fprintf(stderr, "\n");
error = true;
}
else {
this->m_arch = arch;
}
const char * cpuFromIsa;
// Check default LLVM generated targets
if (!strcasecmp(isa, "sse2") ||
!strcasecmp(isa, "sse2-i32x4")) {
this->m_isa = Target::SSE2;
this->m_nativeVectorWidth = 4;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 4;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
cpuFromIsa = "core2";
}
else if (!strcasecmp(isa, "sse2-x2") ||
!strcasecmp(isa, "sse2-i32x8")) {
this->m_isa = Target::SSE2;
this->m_nativeVectorWidth = 4;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 8;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
cpuFromIsa = "core2";
}
else if (!strcasecmp(isa, "sse4") ||
!strcasecmp(isa, "sse4-i32x4")) {
this->m_isa = Target::SSE4;
this->m_nativeVectorWidth = 4;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 4;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
cpuFromIsa = "corei7";
}
else if (!strcasecmp(isa, "sse4x2") ||
!strcasecmp(isa, "sse4-x2") ||
!strcasecmp(isa, "sse4-i32x8")) {
this->m_isa = Target::SSE4;
this->m_nativeVectorWidth = 4;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 8;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
cpuFromIsa = "corei7";
}
else if (!strcasecmp(isa, "sse4-i8x16")) {
this->m_isa = Target::SSE4;
this->m_nativeVectorWidth = 16;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 8;
this->m_vectorWidth = 16;
this->m_maskingIsFree = false;
this->m_maskBitCount = 8;
cpuFromIsa = "corei7";
}
else if (!strcasecmp(isa, "sse4-i16x8")) {
this->m_isa = Target::SSE4;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 16;
this->m_vectorWidth = 8;
this->m_maskingIsFree = false;
this->m_maskBitCount = 16;
cpuFromIsa = "corei7";
}
else if (!strcasecmp(isa, "generic-4") ||
!strcasecmp(isa, "generic-x4")) {
this->m_isa = Target::GENERIC;
this->m_nativeVectorWidth = 4;
this->m_nativeVectorAlignment = 16;
this->m_vectorWidth = 4;
this->m_maskingIsFree = true;
this->m_maskBitCount = 1;
this->m_hasHalf = true;
this->m_hasTranscendentals = true;
this->m_hasTrigonometry = true;
this->m_hasGather = this->m_hasScatter = true;
this->m_hasRsqrtd = this->m_hasRcpd = true;
}
else if (!strcasecmp(isa, "generic-8") ||
!strcasecmp(isa, "generic-x8")) {
this->m_isa = Target::GENERIC;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 32;
this->m_vectorWidth = 8;
this->m_maskingIsFree = true;
this->m_maskBitCount = 1;
this->m_hasHalf = true;
this->m_hasTranscendentals = true;
this->m_hasTrigonometry = true;
this->m_hasGather = this->m_hasScatter = true;
this->m_hasRsqrtd = this->m_hasRcpd = true;
}
else if (!strcasecmp(isa, "generic-16") ||
!strcasecmp(isa, "generic-x16")) {
this->m_isa = Target::GENERIC;
this->m_nativeVectorWidth = 16;
this->m_nativeVectorAlignment = 64;
this->m_vectorWidth = 16;
this->m_maskingIsFree = true;
this->m_maskBitCount = 1;
this->m_hasHalf = true;
this->m_hasTranscendentals = true;
// It's set to false, because stdlib implementation of math functions
// is faster on MIC, than "native" implementation profided by the
// icc compiler.
this->m_hasTrigonometry = false;
this->m_hasGather = this->m_hasScatter = true;
this->m_hasRsqrtd = this->m_hasRcpd = true;
}
else if (!strcasecmp(isa, "generic-32") ||
!strcasecmp(isa, "generic-x32")) {
this->m_isa = Target::GENERIC;
this->m_nativeVectorWidth = 32;
this->m_nativeVectorAlignment = 64;
this->m_vectorWidth = 32;
this->m_maskingIsFree = true;
this->m_maskBitCount = 1;
this->m_hasHalf = true;
this->m_hasTranscendentals = true;
this->m_hasTrigonometry = true;
this->m_hasGather = this->m_hasScatter = true;
this->m_hasRsqrtd = this->m_hasRcpd = true;
}
else if (!strcasecmp(isa, "generic-64") ||
!strcasecmp(isa, "generic-x64")) {
this->m_isa = Target::GENERIC;
this->m_nativeVectorWidth = 64;
this->m_nativeVectorAlignment = 64;
this->m_vectorWidth = 64;
this->m_maskingIsFree = true;
this->m_maskBitCount = 1;
this->m_hasHalf = true;
this->m_hasTranscendentals = true;
this->m_hasTrigonometry = true;
this->m_hasGather = this->m_hasScatter = true;
this->m_hasRsqrtd = this->m_hasRcpd = true;
}
else if (!strcasecmp(isa, "generic-1") ||
!strcasecmp(isa, "generic-x1")) {
this->m_isa = Target::GENERIC;
this->m_nativeVectorWidth = 1;
this->m_nativeVectorAlignment = 16;
this->m_vectorWidth = 1;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
}
else if (!strcasecmp(isa, "avx1-i32x4")) {
this->m_isa = Target::AVX;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 4;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
cpuFromIsa = "corei7-avx";
}
else if (!strcasecmp(isa, "avx") ||
!strcasecmp(isa, "avx1") ||
!strcasecmp(isa, "avx1-i32x8")) {
this->m_isa = Target::AVX;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 8;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
cpuFromIsa = "corei7-avx";
}
else if (!strcasecmp(isa, "avx-i64x4") ||
!strcasecmp(isa, "avx1-i64x4")) {
this->m_isa = Target::AVX;
this->m_nativeVectorWidth = 8; /* native vector width in terms of floats */
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 64;
this->m_vectorWidth = 4;
this->m_maskingIsFree = false;
this->m_maskBitCount = 64;
cpuFromIsa = "corei7-avx";
}
else if (!strcasecmp(isa, "avx-x2") ||
!strcasecmp(isa, "avx1-x2") ||
!strcasecmp(isa, "avx1-i32x16")) {
this->m_isa = Target::AVX;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 16;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
cpuFromIsa = "corei7-avx";
}
else if (!strcasecmp(isa, "avx1.1") ||
!strcasecmp(isa, "avx1.1-i32x8")) {
this->m_isa = Target::AVX11;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 8;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
this->m_hasHalf = true;
this->m_hasRand = true;
cpuFromIsa = "core-avx-i";
}
else if (!strcasecmp(isa, "avx1.1-x2") ||
!strcasecmp(isa, "avx1.1-i32x16")) {
this->m_isa = Target::AVX11;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 16;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
this->m_hasHalf = true;
this->m_hasRand = true;
cpuFromIsa = "core-avx-i";
}
else if (!strcasecmp(isa, "avx1.1-i64x4")) {
this->m_isa = Target::AVX11;
this->m_nativeVectorWidth = 8; /* native vector width in terms of floats */
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 64;
this->m_vectorWidth = 4;
this->m_maskingIsFree = false;
this->m_maskBitCount = 64;
this->m_hasHalf = true;
this->m_hasRand = true;
cpuFromIsa = "core-avx-i";
}
else if (!strcasecmp(isa, "avx2") ||
!strcasecmp(isa, "avx2-i32x8")) {
this->m_isa = Target::AVX2;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 8;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
this->m_hasHalf = true;
this->m_hasRand = true;
this->m_hasGather = true;
cpuFromIsa = "core-avx2";
}
else if (!strcasecmp(isa, "avx2-x2") ||
!strcasecmp(isa, "avx2-i32x16")) {
this->m_isa = Target::AVX2;
this->m_nativeVectorWidth = 16;
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 16;
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
this->m_hasHalf = true;
this->m_hasRand = true;
this->m_hasGather = true;
cpuFromIsa = "core-avx2";
}
else if (!strcasecmp(isa, "avx2-i64x4")) {
this->m_isa = Target::AVX2;
this->m_nativeVectorWidth = 8; /* native vector width in terms of floats */
this->m_nativeVectorAlignment = 32;
this->m_dataTypeWidth = 64;
this->m_vectorWidth = 4;
this->m_maskingIsFree = false;
this->m_maskBitCount = 64;
this->m_hasHalf = true;
this->m_hasRand = true;
this->m_hasGather = true;
cpuFromIsa = "core-avx2";
}
#ifdef ISPC_ARM_ENABLED
else if (!strcasecmp(isa, "neon-i8x16")) {
this->m_isa = Target::NEON8;
this->m_nativeVectorWidth = 16;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 8;
this->m_vectorWidth = 16;
this->m_attributes = "+neon,+fp16";
this->m_hasHalf = true; // ??
this->m_maskingIsFree = false;
this->m_maskBitCount = 8;
}
else if (!strcasecmp(isa, "neon-i16x8")) {
this->m_isa = Target::NEON16;
this->m_nativeVectorWidth = 8;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 16;
this->m_vectorWidth = 8;
this->m_attributes = "+neon,+fp16";
this->m_hasHalf = true; // ??
this->m_maskingIsFree = false;
this->m_maskBitCount = 16;
}
else if (!strcasecmp(isa, "neon") ||
!strcasecmp(isa, "neon-i32x4")) {
this->m_isa = Target::NEON32;
this->m_nativeVectorWidth = 4;
this->m_nativeVectorAlignment = 16;
this->m_dataTypeWidth = 32;
this->m_vectorWidth = 4;
this->m_attributes = "+neon,+fp16";
this->m_hasHalf = true; // ??
this->m_maskingIsFree = false;
this->m_maskBitCount = 32;
}
#endif
else {
Error(SourcePos(), "Target \"%s\" is unknown. Choices are: %s.",
isa, SupportedTargets());
error = true;
}
#if defined(ISPC_ARM_ENABLED) && !defined(__arm__)
if (cpu == NULL && !strncmp(isa, "neon", 4))
cpu = "cortex-a9";
#endif
if (cpu == NULL) {
#ifndef ISPC_ARM_ENABLED
if (isa == NULL) {
#endif
std::string hostCPU = llvm::sys::getHostCPUName();
if (hostCPU.size() > 0)
cpu = strdup(hostCPU.c_str());
else {
Warning(SourcePos(), "Unable to determine host CPU!\n");
cpu = "generic";
}
#ifndef ISPC_ARM_ENABLED
}
else {
cpu = cpuFromIsa;
}
#endif
}
else {
bool foundCPU = false;
for (int i = 0; i < int(sizeof(supportedCPUs) / sizeof(supportedCPUs[0]));
++i) {
if (!strcmp(cpu, supportedCPUs[i])) {
foundCPU = true;
break;
}
}
if (foundCPU == false) {
Error(SourcePos(), "Error: CPU type \"%s\" unknown. Supported CPUs: "
"%s.", cpu, SupportedCPUs().c_str());
return;
}
}
this->m_cpu = cpu;
if (!error) {
// Create TargetMachine
std::string triple = GetTripleString();
llvm::Reloc::Model relocModel = m_generatePIC ? llvm::Reloc::PIC_ :
llvm::Reloc::Default;
std::string featuresString = m_attributes;
llvm::TargetOptions options;
#ifdef ISPC_ARM_ENABLED
if (m_isa == Target::NEON8 || m_isa == Target::NEON16 ||
m_isa == Target::NEON32)
options.FloatABIType = llvm::FloatABI::Hard;
#endif
#if !defined(LLVM_3_1)
if (g->opt.disableFMA == false)
options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
#endif // !LLVM_3_1
#ifdef ISPC_IS_WINDOWS
if (strcmp("x86", arch) == 0) {
// Workaround for issue #503 (LLVM issue 14646).
// It's Win32 specific.
options.NoFramePointerElim = true;
}
#endif
m_targetMachine =
m_target->createTargetMachine(triple, m_cpu, featuresString, options,
relocModel);
Assert(m_targetMachine != NULL);
m_targetMachine->setAsmVerbosityDefault(true);
// Initialize TargetData/DataLayout in 3 steps.
// 1. Get default data layout first
std::string dl_string;
#if defined(LLVM_3_1)
dl_string = m_targetMachine->getTargetData()->getStringRepresentation();
#else
dl_string = m_targetMachine->getDataLayout()->getStringRepresentation();
#endif
// 2. Adjust for generic
if (m_isa == Target::GENERIC) {
// <16 x i1> vectors only need 16 bit / 2 byte alignment, so add
// that to the regular datalayout string for IA..
// For generic-4 target we need to treat <4 x i1> as 128 bit value
// in terms of required memory storage and alignment, as this is
// translated to __m128 type.
dl_string = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-"
"f80:128:128-n8:16:32:64-S128-v16:16:16-v32:32:32-v4:128:128";
}
// 3. Finally set member data
#if defined(LLVM_3_1)
m_targetData = new llvm::TargetData(dl_string);
#else
m_dataLayout = new llvm::DataLayout(dl_string);
#endif
// Set is32Bit
// This indicates if we are compiling for 32 bit platform
// and can assume 32 bit runtime.
// FIXME: all generic targets are handled as 64 bit, which is incorrect.
this->m_is32Bit = (getDataLayout()->getPointerSize() == 4);
#if !defined(LLVM_3_1) && !defined(LLVM_3_2)
// This is LLVM 3.3+ feature.
// Initialize target-specific "target-feature" attribute.
if (!m_attributes.empty()) {
llvm::AttrBuilder attrBuilder;
attrBuilder.addAttribute("target-cpu", this->m_cpu);
attrBuilder.addAttribute("target-features", this->m_attributes);
this->m_tf_attributes = new llvm::AttributeSet(
llvm::AttributeSet::get(
*g->ctx,
llvm::AttributeSet::FunctionIndex,
attrBuilder));
}
#endif
Assert(this->m_vectorWidth <= ISPC_MAX_NVEC);
}
m_valid = !error;
return;
}
std::string
Target::SupportedCPUs() {
std::string ret;
int count = sizeof(supportedCPUs) / sizeof(supportedCPUs[0]);
for (int i = 0; i < count; ++i) {
ret += supportedCPUs[i];
if (i != count - 1)
ret += ", ";
}
return ret;
}
const char *
Target::SupportedArchs() {
return
#ifdef ISPC_ARM_ENABLED
"arm, "
#endif
"x86, x86-64";
}
const char *
Target::SupportedTargets() {
return
#ifdef ISPC_ARM_ENABLED
"neon-i8x16, neon-i16x8, neon-i32x4, "
#endif
"sse2-i32x4, sse2-i32x8, "
"sse4-i32x4, sse4-i32x8, sse4-i16x8, sse4-i8x16, "
"avx1-i32x4, "
"avx1-i32x8, avx1-i32x16, avx1-i64x4, "
"avx1.1-i32x8, avx1.1-i32x16, avx1.1-i64x4 "
"avx2-i32x8, avx2-i32x16, avx2-i64x4, "
"generic-x1, generic-x4, generic-x8, generic-x16, "
"generic-x32, generic-x64";
}
std::string
Target::GetTripleString() const {
llvm::Triple triple;
#ifdef ISPC_ARM_ENABLED
if (m_arch == "arm") {
triple.setTriple("armv7-eabi");
}
else
#endif
{
// Start with the host triple as the default
triple.setTriple(llvm::sys::getDefaultTargetTriple());
// And override the arch in the host triple based on what the user
// specified. Here we need to deal with the fact that LLVM uses one
// naming convention for targets TargetRegistry, but wants some
// slightly different ones for the triple. TODO: is there a way to
// have it do this remapping, which would presumably be a bit less
// error prone?
if (m_arch == "x86")
triple.setArchName("i386");
else if (m_arch == "x86-64")
triple.setArchName("x86_64");
else
triple.setArchName(m_arch);
}
return triple.str();
}
// This function returns string representation of ISA for the purpose of
// mangling. And may return any unique string, preferably short, like
// sse4, avx and etc.
const char *
Target::ISAToString(ISA isa) {
switch (isa) {
#ifdef ISPC_ARM_ENABLED
case Target::NEON8:
return "neon-8";
case Target::NEON16:
return "neon-16";
case Target::NEON32:
return "neon-32";
#endif
case Target::SSE2:
return "sse2";
case Target::SSE4:
return "sse4";
case Target::AVX:
return "avx";
case Target::AVX11:
return "avx11";
case Target::AVX2:
return "avx2";
case Target::GENERIC:
return "generic";
default:
FATAL("Unhandled target in ISAToString()");
}
return "";
}
const char *
Target::GetISAString() const {
return ISAToString(m_isa);
}
// This function returns string representation of default target corresponding
// to ISA. I.e. for SSE4 it's sse4-i32x4, for AVX11 it's avx1.1-i32x8. This
// string may be used to initialize Target.
const char *
Target::ISAToTargetString(ISA isa) {
switch (isa) {
#ifdef ISPC_ARM_ENABLED
case Target::NEON8:
return "neon-8";
case Target::NEON16:
return "neon-16";
case Target::NEON32:
return "neon-32";
#endif
case Target::SSE2:
return "sse2-i32x4";
case Target::SSE4:
return "sse4-i32x4";
case Target::AVX:
return "avx1-i32x8";
case Target::AVX11:
return "avx1.1-i32x8";
case Target::AVX2:
return "avx2-i32x8";
case Target::GENERIC:
return "generic-4";
default:
FATAL("Unhandled target in ISAToTargetString()");
}
return "";
}
const char *
Target::GetISATargetString() const {
return ISAToString(m_isa);
}
static bool
lGenericTypeLayoutIndeterminate(llvm::Type *type) {
if (type->isFloatingPointTy() || type->isX86_MMXTy() || type->isVoidTy() ||
type->isIntegerTy() || type->isLabelTy() || type->isMetadataTy())
return false;
if (type == LLVMTypes::BoolVectorType ||
type == LLVMTypes::MaskType ||
type == LLVMTypes::Int1VectorType)
return true;
llvm::ArrayType *at =
llvm::dyn_cast<llvm::ArrayType>(type);
if (at != NULL)
return lGenericTypeLayoutIndeterminate(at->getElementType());
llvm::PointerType *pt =
llvm::dyn_cast<llvm::PointerType>(type);
if (pt != NULL)
return false;
llvm::StructType *st =
llvm::dyn_cast<llvm::StructType>(type);
if (st != NULL) {
for (int i = 0; i < (int)st->getNumElements(); ++i)
if (lGenericTypeLayoutIndeterminate(st->getElementType(i)))
return true;
return false;
}
Assert(llvm::isa<llvm::VectorType>(type));
return true;
}
llvm::Value *
Target::SizeOf(llvm::Type *type,
llvm::BasicBlock *insertAtEnd) {
if (m_isa == Target::GENERIC &&
lGenericTypeLayoutIndeterminate(type)) {
llvm::Value *index[1] = { LLVMInt32(1) };
llvm::PointerType *ptrType = llvm::PointerType::get(type, 0);
llvm::Value *voidPtr = llvm::ConstantPointerNull::get(ptrType);
llvm::ArrayRef<llvm::Value *> arrayRef(&index[0], &index[1]);
llvm::Instruction *gep =
llvm::GetElementPtrInst::Create(voidPtr, arrayRef, "sizeof_gep",
insertAtEnd);
if (m_is32Bit || g->opt.force32BitAddressing)
return new llvm::PtrToIntInst(gep, LLVMTypes::Int32Type,
"sizeof_int", insertAtEnd);
else
return new llvm::PtrToIntInst(gep, LLVMTypes::Int64Type,
"sizeof_int", insertAtEnd);
}
uint64_t bitSize = getDataLayout()->getTypeSizeInBits(type);
Assert((bitSize % 8) == 0);
uint64_t byteSize = bitSize / 8;
if (m_is32Bit || g->opt.force32BitAddressing)
return LLVMInt32((int32_t)byteSize);
else
return LLVMInt64(byteSize);
}
llvm::Value *
Target::StructOffset(llvm::Type *type, int element,
llvm::BasicBlock *insertAtEnd) {
if (m_isa == Target::GENERIC &&
lGenericTypeLayoutIndeterminate(type) == true) {
llvm::Value *indices[2] = { LLVMInt32(0), LLVMInt32(element) };
llvm::PointerType *ptrType = llvm::PointerType::get(type, 0);
llvm::Value *voidPtr = llvm::ConstantPointerNull::get(ptrType);
llvm::ArrayRef<llvm::Value *> arrayRef(&indices[0], &indices[2]);
llvm::Instruction *gep =
llvm::GetElementPtrInst::Create(voidPtr, arrayRef, "offset_gep",
insertAtEnd);
if (m_is32Bit || g->opt.force32BitAddressing)
return new llvm::PtrToIntInst(gep, LLVMTypes::Int32Type,
"offset_int", insertAtEnd);
else
return new llvm::PtrToIntInst(gep, LLVMTypes::Int64Type,
"offset_int", insertAtEnd);
}
llvm::StructType *structType =
llvm::dyn_cast<llvm::StructType>(type);
if (structType == NULL || structType->isSized() == false) {
Assert(m->errorCount > 0);
return NULL;
}
const llvm::StructLayout *sl = getDataLayout()->getStructLayout(structType);
Assert(sl != NULL);
uint64_t offset = sl->getElementOffset(element);
if (m_is32Bit || g->opt.force32BitAddressing)
return LLVMInt32((int32_t)offset);
else
return LLVMInt64(offset);
}
void Target::markFuncWithTargetAttr(llvm::Function* func) {
#if !defined(LLVM_3_1) && !defined(LLVM_3_2)
if (m_tf_attributes) {
func->addAttributes(llvm::AttributeSet::FunctionIndex, *m_tf_attributes);
}
#endif
}
///////////////////////////////////////////////////////////////////////////
// Opt
Opt::Opt() {
level = 1;
fastMath = false;
fastMaskedVload = false;
force32BitAddressing = true;
unrollLoops = true;
disableAsserts = false;
disableFMA = false;
forceAlignedMemory = false;
disableMaskAllOnOptimizations = false;
disableHandlePseudoMemoryOps = false;
disableBlendedMaskedStores = false;
disableCoherentControlFlow = false;
disableUniformControlFlow = false;