-
Notifications
You must be signed in to change notification settings - Fork 0
/
llvmutil.cpp
1724 lines (1450 loc) · 60.6 KB
/
llvmutil.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2010-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file llvmutil.cpp
@brief Implementations of various LLVM utility types and classes.
*/
#include "llvmutil.h"
#include "ispc.h"
#include "type.h"
#if defined(LLVM_3_1) || defined(LLVM_3_2)
#include <llvm/Instructions.h>
#include <llvm/BasicBlock.h>
#else
#include <llvm/IR/Instructions.h>
#include <llvm/IR/BasicBlock.h>
#endif
#include <set>
#include <map>
llvm::Type *LLVMTypes::VoidType = NULL;
llvm::PointerType *LLVMTypes::VoidPointerType = NULL;
llvm::Type *LLVMTypes::PointerIntType = NULL;
llvm::Type *LLVMTypes::BoolType = NULL;
llvm::Type *LLVMTypes::Int8Type = NULL;
llvm::Type *LLVMTypes::Int16Type = NULL;
llvm::Type *LLVMTypes::Int32Type = NULL;
llvm::Type *LLVMTypes::Int64Type = NULL;
llvm::Type *LLVMTypes::FloatType = NULL;
llvm::Type *LLVMTypes::DoubleType = NULL;
llvm::Type *LLVMTypes::Int8PointerType = NULL;
llvm::Type *LLVMTypes::Int16PointerType = NULL;
llvm::Type *LLVMTypes::Int32PointerType = NULL;
llvm::Type *LLVMTypes::Int64PointerType = NULL;
llvm::Type *LLVMTypes::FloatPointerType = NULL;
llvm::Type *LLVMTypes::DoublePointerType = NULL;
llvm::VectorType *LLVMTypes::MaskType = NULL;
llvm::VectorType *LLVMTypes::BoolVectorType = NULL;
llvm::VectorType *LLVMTypes::Int1VectorType = NULL;
llvm::VectorType *LLVMTypes::Int8VectorType = NULL;
llvm::VectorType *LLVMTypes::Int16VectorType = NULL;
llvm::VectorType *LLVMTypes::Int32VectorType = NULL;
llvm::VectorType *LLVMTypes::Int64VectorType = NULL;
llvm::VectorType *LLVMTypes::FloatVectorType = NULL;
llvm::VectorType *LLVMTypes::DoubleVectorType = NULL;
llvm::Type *LLVMTypes::Int8VectorPointerType = NULL;
llvm::Type *LLVMTypes::Int16VectorPointerType = NULL;
llvm::Type *LLVMTypes::Int32VectorPointerType = NULL;
llvm::Type *LLVMTypes::Int64VectorPointerType = NULL;
llvm::Type *LLVMTypes::FloatVectorPointerType = NULL;
llvm::Type *LLVMTypes::DoubleVectorPointerType = NULL;
llvm::VectorType *LLVMTypes::VoidPointerVectorType = NULL;
llvm::Constant *LLVMTrue = NULL;
llvm::Constant *LLVMFalse = NULL;
llvm::Constant *LLVMMaskAllOn = NULL;
llvm::Constant *LLVMMaskAllOff = NULL;
void
InitLLVMUtil(llvm::LLVMContext *ctx, Target& target) {
LLVMTypes::VoidType = llvm::Type::getVoidTy(*ctx);
LLVMTypes::VoidPointerType = llvm::PointerType::get(llvm::Type::getInt8Ty(*ctx), 0);
LLVMTypes::PointerIntType = target.is32Bit() ? llvm::Type::getInt32Ty(*ctx) :
llvm::Type::getInt64Ty(*ctx);
LLVMTypes::BoolType = llvm::Type::getInt1Ty(*ctx);
LLVMTypes::Int8Type = llvm::Type::getInt8Ty(*ctx);
LLVMTypes::Int16Type = llvm::Type::getInt16Ty(*ctx);
LLVMTypes::Int32Type = llvm::Type::getInt32Ty(*ctx);
LLVMTypes::Int64Type = llvm::Type::getInt64Ty(*ctx);
LLVMTypes::FloatType = llvm::Type::getFloatTy(*ctx);
LLVMTypes::DoubleType = llvm::Type::getDoubleTy(*ctx);
LLVMTypes::Int8PointerType = llvm::PointerType::get(LLVMTypes::Int8Type, 0);
LLVMTypes::Int16PointerType = llvm::PointerType::get(LLVMTypes::Int16Type, 0);
LLVMTypes::Int32PointerType = llvm::PointerType::get(LLVMTypes::Int32Type, 0);
LLVMTypes::Int64PointerType = llvm::PointerType::get(LLVMTypes::Int64Type, 0);
LLVMTypes::FloatPointerType = llvm::PointerType::get(LLVMTypes::FloatType, 0);
LLVMTypes::DoublePointerType = llvm::PointerType::get(LLVMTypes::DoubleType, 0);
switch (target.getMaskBitCount()) {
case 1:
LLVMTypes::MaskType = LLVMTypes::BoolVectorType =
llvm::VectorType::get(llvm::Type::getInt1Ty(*ctx), target.getVectorWidth());
break;
case 8:
LLVMTypes::MaskType = LLVMTypes::BoolVectorType =
llvm::VectorType::get(llvm::Type::getInt8Ty(*ctx), target.getVectorWidth());
break;
case 16:
LLVMTypes::MaskType = LLVMTypes::BoolVectorType =
llvm::VectorType::get(llvm::Type::getInt16Ty(*ctx), target.getVectorWidth());
break;
case 32:
LLVMTypes::MaskType = LLVMTypes::BoolVectorType =
llvm::VectorType::get(llvm::Type::getInt32Ty(*ctx), target.getVectorWidth());
break;
case 64:
LLVMTypes::MaskType = LLVMTypes::BoolVectorType =
llvm::VectorType::get(llvm::Type::getInt64Ty(*ctx), target.getVectorWidth());
break;
default:
FATAL("Unhandled mask width for initializing MaskType");
}
LLVMTypes::Int1VectorType =
llvm::VectorType::get(llvm::Type::getInt1Ty(*ctx), target.getVectorWidth());
LLVMTypes::Int8VectorType =
llvm::VectorType::get(LLVMTypes::Int8Type, target.getVectorWidth());
LLVMTypes::Int16VectorType =
llvm::VectorType::get(LLVMTypes::Int16Type, target.getVectorWidth());
LLVMTypes::Int32VectorType =
llvm::VectorType::get(LLVMTypes::Int32Type, target.getVectorWidth());
LLVMTypes::Int64VectorType =
llvm::VectorType::get(LLVMTypes::Int64Type, target.getVectorWidth());
LLVMTypes::FloatVectorType =
llvm::VectorType::get(LLVMTypes::FloatType, target.getVectorWidth());
LLVMTypes::DoubleVectorType =
llvm::VectorType::get(LLVMTypes::DoubleType, target.getVectorWidth());
LLVMTypes::Int8VectorPointerType = llvm::PointerType::get(LLVMTypes::Int8VectorType, 0);
LLVMTypes::Int16VectorPointerType = llvm::PointerType::get(LLVMTypes::Int16VectorType, 0);
LLVMTypes::Int32VectorPointerType = llvm::PointerType::get(LLVMTypes::Int32VectorType, 0);
LLVMTypes::Int64VectorPointerType = llvm::PointerType::get(LLVMTypes::Int64VectorType, 0);
LLVMTypes::FloatVectorPointerType = llvm::PointerType::get(LLVMTypes::FloatVectorType, 0);
LLVMTypes::DoubleVectorPointerType = llvm::PointerType::get(LLVMTypes::DoubleVectorType, 0);
LLVMTypes::VoidPointerVectorType = g->target->is32Bit() ? LLVMTypes::Int32VectorType :
LLVMTypes::Int64VectorType;
LLVMTrue = llvm::ConstantInt::getTrue(*ctx);
LLVMFalse = llvm::ConstantInt::getFalse(*ctx);
std::vector<llvm::Constant *> maskOnes;
llvm::Constant *onMask = NULL;
switch (target.getMaskBitCount()) {
case 1:
onMask = llvm::ConstantInt::get(llvm::Type::getInt1Ty(*ctx), 1,
false /*unsigned*/); // 0x1
break;
case 8:
onMask = llvm::ConstantInt::get(llvm::Type::getInt8Ty(*ctx), -1,
true /*signed*/); // 0xff
break;
case 16:
onMask = llvm::ConstantInt::get(llvm::Type::getInt16Ty(*ctx), -1,
true /*signed*/); // 0xffff
break;
case 32:
onMask = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*ctx), -1,
true /*signed*/); // 0xffffffff
break;
case 64:
onMask = llvm::ConstantInt::get(llvm::Type::getInt64Ty(*ctx), -1,
true /*signed*/); // 0xffffffffffffffffull
break;
default:
FATAL("Unhandled mask width for onMask");
}
for (int i = 0; i < target.getVectorWidth(); ++i)
maskOnes.push_back(onMask);
LLVMMaskAllOn = llvm::ConstantVector::get(maskOnes);
std::vector<llvm::Constant *> maskZeros;
llvm::Constant *offMask = NULL;
switch (target.getMaskBitCount()) {
case 1:
offMask = llvm::ConstantInt::get(llvm::Type::getInt1Ty(*ctx), 0,
true /*signed*/);
break;
case 8:
offMask = llvm::ConstantInt::get(llvm::Type::getInt8Ty(*ctx), 0,
true /*signed*/);
break;
case 16:
offMask = llvm::ConstantInt::get(llvm::Type::getInt16Ty(*ctx), 0,
true /*signed*/);
break;
case 32:
offMask = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*ctx), 0,
true /*signed*/);
break;
case 64:
offMask = llvm::ConstantInt::get(llvm::Type::getInt64Ty(*ctx), 0,
true /*signed*/);
break;
default:
FATAL("Unhandled mask width for offMask");
}
for (int i = 0; i < target.getVectorWidth(); ++i)
maskZeros.push_back(offMask);
LLVMMaskAllOff = llvm::ConstantVector::get(maskZeros);
}
llvm::ConstantInt *
LLVMInt8(int8_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt8Ty(*g->ctx), ival,
true /*signed*/);
}
llvm::ConstantInt *
LLVMUInt8(uint8_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt8Ty(*g->ctx), ival,
false /*unsigned*/);
}
llvm::ConstantInt *
LLVMInt16(int16_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt16Ty(*g->ctx), ival,
true /*signed*/);
}
llvm::ConstantInt *
LLVMUInt16(uint16_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt16Ty(*g->ctx), ival,
false /*unsigned*/);
}
llvm::ConstantInt *
LLVMInt32(int32_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt32Ty(*g->ctx), ival,
true /*signed*/);
}
llvm::ConstantInt *
LLVMUInt32(uint32_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt32Ty(*g->ctx), ival,
false /*unsigned*/);
}
llvm::ConstantInt *
LLVMInt64(int64_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt64Ty(*g->ctx), ival,
true /*signed*/);
}
llvm::ConstantInt *
LLVMUInt64(uint64_t ival) {
return llvm::ConstantInt::get(llvm::Type::getInt64Ty(*g->ctx), ival,
false /*unsigned*/);
}
llvm::Constant *
LLVMFloat(float fval) {
return llvm::ConstantFP::get(llvm::Type::getFloatTy(*g->ctx), fval);
}
llvm::Constant *
LLVMDouble(double dval) {
return llvm::ConstantFP::get(llvm::Type::getDoubleTy(*g->ctx), dval);
}
llvm::Constant *
LLVMInt8Vector(int8_t ival) {
llvm::Constant *v = LLVMInt8(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMInt8Vector(const int8_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMInt8(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt8Vector(uint8_t ival) {
llvm::Constant *v = LLVMUInt8(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt8Vector(const uint8_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMUInt8(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMInt16Vector(int16_t ival) {
llvm::Constant *v = LLVMInt16(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMInt16Vector(const int16_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMInt16(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt16Vector(uint16_t ival) {
llvm::Constant *v = LLVMUInt16(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt16Vector(const uint16_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMUInt16(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMInt32Vector(int32_t ival) {
llvm::Constant *v = LLVMInt32(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMInt32Vector(const int32_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMInt32(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt32Vector(uint32_t ival) {
llvm::Constant *v = LLVMUInt32(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt32Vector(const uint32_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMUInt32(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMFloatVector(float fval) {
llvm::Constant *v = LLVMFloat(fval);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMFloatVector(const float *fvec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMFloat(fvec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMDoubleVector(double dval) {
llvm::Constant *v = LLVMDouble(dval);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMDoubleVector(const double *dvec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMDouble(dvec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMInt64Vector(int64_t ival) {
llvm::Constant *v = LLVMInt64(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMInt64Vector(const int64_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMInt64(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt64Vector(uint64_t ival) {
llvm::Constant *v = LLVMUInt64(ival);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMUInt64Vector(const uint64_t *ivec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(LLVMUInt64(ivec[i]));
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMBoolVector(bool b) {
llvm::Constant *v;
if (LLVMTypes::BoolVectorType == LLVMTypes::Int64VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int64Type, b ? 0xffffffffffffffffull : 0,
false /*unsigned*/);
else if (LLVMTypes::BoolVectorType == LLVMTypes::Int32VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int32Type, b ? 0xffffffff : 0,
false /*unsigned*/);
else if (LLVMTypes::BoolVectorType == LLVMTypes::Int16VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int16Type, b ? 0xffff : 0,
false /*unsigned*/);
else if (LLVMTypes::BoolVectorType == LLVMTypes::Int8VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int8Type, b ? 0xff : 0,
false /*unsigned*/);
else {
Assert(LLVMTypes::BoolVectorType == LLVMTypes::Int1VectorType);
v = b ? LLVMTrue : LLVMFalse;
}
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMBoolVector(const bool *bvec) {
std::vector<llvm::Constant *> vals;
for (int i = 0; i < g->target->getVectorWidth(); ++i) {
llvm::Constant *v;
if (LLVMTypes::BoolVectorType == LLVMTypes::Int64VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int64Type, bvec[i] ? 0xffffffffffffffffull : 0,
false /*unsigned*/);
else if (LLVMTypes::BoolVectorType == LLVMTypes::Int32VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int32Type, bvec[i] ? 0xffffffff : 0,
false /*unsigned*/);
else if (LLVMTypes::BoolVectorType == LLVMTypes::Int16VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int16Type, bvec[i] ? 0xffff : 0,
false /*unsigned*/);
else if (LLVMTypes::BoolVectorType == LLVMTypes::Int8VectorType)
v = llvm::ConstantInt::get(LLVMTypes::Int8Type, bvec[i] ? 0xff : 0,
false /*unsigned*/);
else {
Assert(LLVMTypes::BoolVectorType == LLVMTypes::Int1VectorType);
v = bvec[i] ? LLVMTrue : LLVMFalse;
}
vals.push_back(v);
}
return llvm::ConstantVector::get(vals);
}
llvm::Constant *
LLVMIntAsType(int64_t val, llvm::Type *type) {
llvm::VectorType *vecType =
llvm::dyn_cast<llvm::VectorType>(type);
if (vecType != NULL) {
llvm::Constant *v = llvm::ConstantInt::get(vecType->getElementType(),
val, true /* signed */);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < (int)vecType->getNumElements(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
else
return llvm::ConstantInt::get(type, val, true /* signed */);
}
llvm::Constant *
LLVMUIntAsType(uint64_t val, llvm::Type *type) {
llvm::VectorType *vecType =
llvm::dyn_cast<llvm::VectorType>(type);
if (vecType != NULL) {
llvm::Constant *v = llvm::ConstantInt::get(vecType->getElementType(),
val, false /* unsigned */);
std::vector<llvm::Constant *> vals;
for (int i = 0; i < (int)vecType->getNumElements(); ++i)
vals.push_back(v);
return llvm::ConstantVector::get(vals);
}
else
return llvm::ConstantInt::get(type, val, false /* unsigned */);
}
/** Conservative test to see if two llvm::Values are equal. There are
(potentially many) cases where the two values actually are equal but
this will return false. However, if it does return true, the two
vectors definitely are equal.
*/
static bool
lValuesAreEqual(llvm::Value *v0, llvm::Value *v1,
std::vector<llvm::PHINode *> &seenPhi0,
std::vector<llvm::PHINode *> &seenPhi1) {
// Thanks to the fact that LLVM hashes and returns the same pointer for
// constants (of all sorts, even constant expressions), this first test
// actually catches a lot of cases. LLVM's SSA form also helps a lot
// with this..
if (v0 == v1)
return true;
Assert(seenPhi0.size() == seenPhi1.size());
for (unsigned int i = 0; i < seenPhi0.size(); ++i)
if (v0 == seenPhi0[i] && v1 == seenPhi1[i])
return true;
llvm::BinaryOperator *bo0 = llvm::dyn_cast<llvm::BinaryOperator>(v0);
llvm::BinaryOperator *bo1 = llvm::dyn_cast<llvm::BinaryOperator>(v1);
if (bo0 != NULL && bo1 != NULL) {
if (bo0->getOpcode() != bo1->getOpcode())
return false;
return (lValuesAreEqual(bo0->getOperand(0), bo1->getOperand(0),
seenPhi0, seenPhi1) &&
lValuesAreEqual(bo0->getOperand(1), bo1->getOperand(1),
seenPhi0, seenPhi1));
}
llvm::CastInst *cast0 = llvm::dyn_cast<llvm::CastInst>(v0);
llvm::CastInst *cast1 = llvm::dyn_cast<llvm::CastInst>(v1);
if (cast0 != NULL && cast1 != NULL) {
if (cast0->getOpcode() != cast1->getOpcode())
return false;
return lValuesAreEqual(cast0->getOperand(0), cast1->getOperand(0),
seenPhi0, seenPhi1);
}
llvm::PHINode *phi0 = llvm::dyn_cast<llvm::PHINode>(v0);
llvm::PHINode *phi1 = llvm::dyn_cast<llvm::PHINode>(v1);
if (phi0 != NULL && phi1 != NULL) {
if (phi0->getNumIncomingValues() != phi1->getNumIncomingValues())
return false;
seenPhi0.push_back(phi0);
seenPhi1.push_back(phi1);
unsigned int numIncoming = phi0->getNumIncomingValues();
// Check all of the incoming values: if all of them are all equal,
// then we're good.
bool anyFailure = false;
for (unsigned int i = 0; i < numIncoming; ++i) {
// FIXME: should it be ok if the incoming blocks are different,
// where we just return faliure in this case?
Assert(phi0->getIncomingBlock(i) == phi1->getIncomingBlock(i));
if (!lValuesAreEqual(phi0->getIncomingValue(i),
phi1->getIncomingValue(i), seenPhi0, seenPhi1)) {
anyFailure = true;
break;
}
}
seenPhi0.pop_back();
seenPhi1.pop_back();
return !anyFailure;
}
return false;
}
/** Given an llvm::Value known to be an integer, return its value as
an int64_t.
*/
static int64_t
lGetIntValue(llvm::Value *offset) {
llvm::ConstantInt *intOffset = llvm::dyn_cast<llvm::ConstantInt>(offset);
Assert(intOffset && (intOffset->getBitWidth() == 32 ||
intOffset->getBitWidth() == 64));
return intOffset->getSExtValue();
}
llvm::Value *
LLVMFlattenInsertChain(llvm::Value *inst, int vectorWidth,
bool compare, bool undef) {
llvm::Value ** elements = new llvm::Value*[vectorWidth];
for (int i = 0; i < vectorWidth; ++i) {
elements[i] = NULL;
}
// Catch a pattern of InsertElement chain.
if (llvm::InsertElementInst *ie =
llvm::dyn_cast<llvm::InsertElementInst>(inst)) {
//Gather elements of vector
while (ie != NULL) {
int64_t iOffset = lGetIntValue(ie->getOperand(2));
Assert(iOffset >= 0 && iOffset < vectorWidth);
// Get the scalar value from this insert
if (elements[iOffset] == NULL) {
elements[iOffset] = ie->getOperand(1);
}
// Do we have another insert?
llvm::Value *insertBase = ie->getOperand(0);
ie = llvm::dyn_cast<llvm::InsertElementInst>(insertBase);
if (ie != NULL) {
continue;
}
if (llvm::isa<llvm::UndefValue>(insertBase)) {
break;
}
if (llvm::isa<llvm::ConstantVector>(insertBase) ||
llvm::isa<llvm::ConstantAggregateZero>(insertBase)) {
llvm::Constant *cv = llvm::dyn_cast<llvm::Constant>(insertBase);
Assert(vectorWidth == (int)(cv->getNumOperands()));
for (int i=0; i<vectorWidth; i++) {
if (elements[i] == NULL) {
elements[i] = cv->getOperand(i);
}
}
break;
}
else {
// Here chain ends in llvm::LoadInst or some other.
// They are not equal to each other so we should return NULL if compare
// and first element if we have it.
Assert(compare == true || elements[0] != NULL);
if (compare) {
return NULL;
}
else {
return elements[0];
}
}
// TODO: Also, should we handle some other values like
// ConstantDataVectors.
}
if (compare == false) {
//We simply want first element
return elements[0];
}
int null_number = 0;
int NonNull = 0;
for(int i = 0; i < vectorWidth; i++) {
if (elements[i] == NULL) {
null_number++;
}
else {
NonNull = i;
}
}
if (null_number == vectorWidth) {
//All of elements are NULLs
return NULL;
}
if ((undef == false) && (null_number != 0)) {
//We don't want NULLs in chain, but we have them
return NULL;
}
// Compare elements of vector
for (int i = 0; i < vectorWidth; i++) {
if (elements[i] == NULL) {
continue;
}
std::vector<llvm::PHINode *> seenPhi0;
std::vector<llvm::PHINode *> seenPhi1;
if (lValuesAreEqual(elements[NonNull], elements[i],
seenPhi0, seenPhi1) == false) {
return NULL;
}
}
return elements[NonNull];
}
// Catch a pattern of broadcast implemented as InsertElement + Shuffle:
// %broadcast_init.0 = insertelement <4 x i32> undef, i32 %val, i32 0
// %broadcast.1 = shufflevector <4 x i32> %smear.0, <4 x i32> undef,
// <4 x i32> zeroinitializer
else if (llvm::ShuffleVectorInst *shuf =
llvm::dyn_cast<llvm::ShuffleVectorInst>(inst)) {
llvm::Value *indices = shuf->getOperand(2);
if (llvm::isa<llvm::ConstantAggregateZero>(indices)) {
llvm::Value *op = shuf->getOperand(0);
llvm::InsertElementInst *ie = llvm::dyn_cast<llvm::InsertElementInst>(op);
if (ie != NULL &&
llvm::isa<llvm::UndefValue>(ie->getOperand(0))) {
llvm::ConstantInt *ci =
llvm::dyn_cast<llvm::ConstantInt>(ie->getOperand(2));
if (ci->isZero()) {
return ie->getOperand(1);
}
}
}
}
return NULL;
}
bool
LLVMExtractVectorInts(llvm::Value *v, int64_t ret[], int *nElts) {
// Make sure we do in fact have a vector of integer values here
llvm::VectorType *vt =
llvm::dyn_cast<llvm::VectorType>(v->getType());
Assert(vt != NULL);
Assert(llvm::isa<llvm::IntegerType>(vt->getElementType()));
*nElts = (int)vt->getNumElements();
if (llvm::isa<llvm::ConstantAggregateZero>(v)) {
for (int i = 0; i < (int)vt->getNumElements(); ++i)
ret[i] = 0;
return true;
}
llvm::ConstantDataVector *cv = llvm::dyn_cast<llvm::ConstantDataVector>(v);
if (cv == NULL)
return false;
for (int i = 0; i < (int)cv->getNumElements(); ++i)
ret[i] = cv->getElementAsInteger(i);
return true;
}
static bool
lVectorValuesAllEqual(llvm::Value *v, int vectorLength,
std::vector<llvm::PHINode *> &seenPhis,
llvm::Value **splatValue = NULL);
/** This function checks to see if the given (scalar or vector) value is an
exact multiple of baseValue. It returns true if so, and false if not
(or if it's not able to determine if it is). Any vector value passed
in is required to have the same value in all elements (so that we can
just check the first element to be a multiple of the given value.)
*/
static bool
lIsExactMultiple(llvm::Value *val, int baseValue, int vectorLength,
std::vector<llvm::PHINode *> &seenPhis) {
if (llvm::isa<llvm::VectorType>(val->getType()) == false) {
// If we've worked down to a constant int, then the moment of truth
// has arrived...
llvm::ConstantInt *ci = llvm::dyn_cast<llvm::ConstantInt>(val);
if (ci != NULL)
return (ci->getZExtValue() % baseValue) == 0;
}
else
Assert(LLVMVectorValuesAllEqual(val));
if (llvm::isa<llvm::InsertElementInst>(val) ||
llvm::isa<llvm::ShuffleVectorInst>(val)) {
llvm::Value *element = LLVMFlattenInsertChain(val, g->target->getVectorWidth());
// We just need to check the scalar first value, since we know that
// all elements are equal
return lIsExactMultiple(element, baseValue, vectorLength, seenPhis);
}
llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(val);
if (phi != NULL) {
for (unsigned int i = 0; i < seenPhis.size(); ++i)
if (phi == seenPhis[i])
return true;
seenPhis.push_back(phi);
unsigned int numIncoming = phi->getNumIncomingValues();
// Check all of the incoming values: if all of them pass, then
// we're good.
for (unsigned int i = 0; i < numIncoming; ++i) {
llvm::Value *incoming = phi->getIncomingValue(i);
bool mult = lIsExactMultiple(incoming, baseValue, vectorLength,
seenPhis);
if (mult == false) {
seenPhis.pop_back();
return false;
}
}
seenPhis.pop_back();
return true;
}
llvm::BinaryOperator *bop = llvm::dyn_cast<llvm::BinaryOperator>(val);
if (bop != NULL && bop->getOpcode() == llvm::Instruction::Add) {
llvm::Value *op0 = bop->getOperand(0);
llvm::Value *op1 = bop->getOperand(1);
bool be0 = lIsExactMultiple(op0, baseValue, vectorLength, seenPhis);
bool be1 = lIsExactMultiple(op1, baseValue, vectorLength, seenPhis);
return (be0 && be1);
}
// FIXME: mul? casts? ... ?
return false;
}
/** Returns the next power of two greater than or equal to the given
value. */
static int
lRoundUpPow2(int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return v+1;
}
/** Try to determine if all of the elements of the given vector value have
the same value when divided by the given baseValue. The function
returns true if this can be determined to be the case, and false
otherwise. (This function may fail to identify some cases where it
does in fact have this property, but should never report a given value
as being a multiple if it isn't!)
*/
static bool
lAllDivBaseEqual(llvm::Value *val, int64_t baseValue, int vectorLength,
std::vector<llvm::PHINode *> &seenPhis,
bool &canAdd) {
Assert(llvm::isa<llvm::VectorType>(val->getType()));
// Make sure the base value is a positive power of 2
Assert(baseValue > 0 && (baseValue & (baseValue-1)) == 0);
// The easy case
if (lVectorValuesAllEqual(val, vectorLength, seenPhis))
return true;
int64_t vecVals[ISPC_MAX_NVEC];
int nElts;
if (llvm::isa<llvm::VectorType>(val->getType()) &&
LLVMExtractVectorInts(val, vecVals, &nElts)) {
// If we have a vector of compile-time constant integer values,
// then go ahead and check them directly..
int64_t firstDiv = vecVals[0] / baseValue;
for (int i = 1; i < nElts; ++i)
if ((vecVals[i] / baseValue) != firstDiv)
return false;
return true;
}
llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(val);
if (phi != NULL) {
for (unsigned int i = 0; i < seenPhis.size(); ++i)
if (phi == seenPhis[i])
return true;
seenPhis.push_back(phi);
unsigned int numIncoming = phi->getNumIncomingValues();
// Check all of the incoming values: if all of them pass, then
// we're good.
for (unsigned int i = 0; i < numIncoming; ++i) {
llvm::Value *incoming = phi->getIncomingValue(i);
bool ca = canAdd;
bool mult = lAllDivBaseEqual(incoming, baseValue, vectorLength,
seenPhis, ca);
if (mult == false) {
seenPhis.pop_back();
return false;
}
}
seenPhis.pop_back();
return true;
}
llvm::BinaryOperator *bop = llvm::dyn_cast<llvm::BinaryOperator>(val);
if (bop != NULL && bop->getOpcode() == llvm::Instruction::Add &&
canAdd == true) {
llvm::Value *op0 = bop->getOperand(0);
llvm::Value *op1 = bop->getOperand(1);
// Otherwise we're only going to worry about the following case,
// which comes up often when looping over SOA data:
// ashr %val, <constant shift>
// where %val = add %smear, <0,1,2,3...>
// and where the maximum of the <0,...> vector in the add is less than
// 1<<(constant shift),
// and where %smear is a smear of a value that is a multiple of
// baseValue.
int64_t addConstants[ISPC_MAX_NVEC];
if (LLVMExtractVectorInts(op1, addConstants, &nElts) == false)
return false;
Assert(nElts == vectorLength);
// Do all of them give the same value when divided by baseValue?
int64_t firstConstDiv = addConstants[0] / baseValue;
for (int i = 1; i < vectorLength; ++i)
if ((addConstants[i] / baseValue) != firstConstDiv)
return false;
if (lVectorValuesAllEqual(op0, vectorLength, seenPhis) == false)
return false;
// Note that canAdd is a reference parameter; setting this ensures
// that we don't allow multiple adds in other parts of the chain of
// dependent values from here.
canAdd = false;
// Now we need to figure out the required alignment (in numbers of
// elements of the underlying type being indexed) of the value to
// which these integer addConstant[] values are being added to. We
// know that we have addConstant[] values that all give the same