-
Notifications
You must be signed in to change notification settings - Fork 8
/
create_datasets.py
executable file
·202 lines (151 loc) · 6.32 KB
/
create_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
Loads data
"""
import os
import random
import nltk
import pandas
import numpy
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from sklearn import preprocessing
#******************** UNIMODAL REGRESSOR SEQUENCE ********************#
class UnimodalRegressorSequenceDataset(Dataset):
def __init__(self, dataset_file_path, features_path, ids, max_len, random_crop, model_type):
label = 'PHQ_Score'
dataset = pandas.DataFrame(pandas.read_csv(dataset_file_path))
self.ids = ids
self.max_len = max_len
self.random_crop = random_crop
self.model_type = model_type
self.features = dict([(int(d['ids']), os.path.join(features_path, str(int(d['ids'])) + '.npy')) for idx, d in dataset.iterrows() if int(d['ids']) in self.ids])
self.label = dict([(int(d['ids']), d[label]) for idx, d in dataset.iterrows() if int(d['ids']) in self.ids])
def __getitem__(self, idx):
item_id = self.ids[idx]
item = numpy.load(self.features[item_id])
if item.shape[0] > self.max_len:
if self.random_crop:
start_i = random.randint(0, item.shape[0] - self.max_len)
item = item[start_i:start_i + self.max_len, :]
else:
start_i = int((item.shape[0] - self.max_len) / 2)
item = item[start_i:start_i + self.max_len, :]
item = torch.Tensor(item)
label = Variable(torch.Tensor([self.label[item_id]]))
return item, label
def __len__(self):
return len(self.ids)
class UnimodalRegressorSequenceTestDataset(Dataset):
def __init__(self, dataset_file_path, features_path, ids, max_len, random_crop, model_type):
dataset = pandas.DataFrame(pandas.read_csv(dataset_file_path))
self.ids = ids
self.max_len = max_len
self.random_crop = random_crop
self.model_type = model_type
self.features = dict([(int(d['ids']), os.path.join(features_path, str(int(d['ids'])) + '.npy')) for idx, d in dataset.iterrows() if int(d['ids']) in self.ids])
def __getitem__(self, idx):
item_id = self.ids[idx]
item = numpy.load(self.features[item_id])
if item.shape[0] > self.max_len:
if self.random_crop:
start_i = random.randint(0, item.shape[0] - self.max_len)
item = item[start_i:start_i + self.max_len, :]
else:
start_i = int((item.shape[0] - self.max_len) / 2)
item = item[start_i:start_i + self.max_len, :]
item = torch.Tensor(item)
return item
def __len__(self):
return len(self.ids)
def collate_fn_unimodal_regressor_sequence_dataset(data):
original_sort = list()
for i in range(0, len(data)):
data[i] = (i, data[i])
data.sort(key=lambda x: x[1][0].shape[0], reverse=True)
for i in range(0, len(data)):
original_sort.append(data[i][0])
ids, tmp_features_labels = zip(*data)
features_tmp, labels_tmp = zip(*tmp_features_labels)
features_dim = features_tmp[0].shape[1]
lengths = [feature.shape[0] for feature in features_tmp]
sort_indx = numpy.argsort(original_sort)
features = torch.zeros((len(features_tmp), max(lengths), features_dim)).float()
for i, feature in enumerate(features_tmp):
end = lengths[i]
features[i, :end, :] = feature[:end, :]
labels = torch.Tensor(labels_tmp).float()
return features, lengths, labels, sort_indx
def collate_fn_unimodal_regressor_sequence_test(data):
original_sort = list()
for i in range(0, len(data)):
data[i] = (i, data[i])
data.sort(key=lambda x: x[1][0].shape[0], reverse=True)
for i in range(0, len(data)):
original_sort.append(data[i][0])
ids, features_tmp = zip(*data)
features_dim = features_tmp[0].shape[1]
lengths = [feature.shape[0] for feature in features_tmp]
sort_indx = numpy.argsort(original_sort)
features = torch.zeros((len(features_tmp), max(lengths), features_dim)).float()
for i, feature in enumerate(features_tmp):
end = lengths[i]
features[i, :end, :] = feature[:end, :]
return features, lengths, sort_indx
def get_unimodal_regressor_sequence_dataset(dataset_file_path, features_path, ids, model_type, batch_size, shuffle, split, max_len, workers_num, collate_fn):
if split != 'test':
dataset = UnimodalRegressorSequenceDataset( dataset_file_path=dataset_file_path,
features_path=features_path,
ids=ids,
max_len=max_len,
random_crop=False,
model_type=model_type)
else:
dataset = UnimodalRegressorSequenceTestDataset( dataset_file_path=dataset_file_path,
features_path=features_path,
ids=ids,
max_len=max_len,
random_crop=False,
model_type=model_type)
data_loader = DataLoader( dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=workers_num,
collate_fn=collate_fn,
pin_memory=True)
return data_loader
def get_loaders_unimodal_regressor_sequence_dataset(ids, opt):
features_path = os.path.join(opt.dataset_path, opt.modality, opt.feature_type)
file_path = os.path.join(opt.dataset_path, opt.dataset_file_path)
train_loader = get_unimodal_regressor_sequence_dataset( dataset_file_path=file_path,
features_path=features_path,
ids=ids['train'],
model_type=opt.model_type,
batch_size=opt.batch_size,
shuffle=True,
split='train',
max_len=opt.max_sequence_length,
workers_num=opt.workers_num,
collate_fn=collate_fn_unimodal_regressor_sequence_dataset)
val_loader = get_unimodal_regressor_sequence_dataset( dataset_file_path=file_path,
features_path=features_path,
ids=ids['val'],
model_type=opt.model_type,
batch_size=opt.batch_size,
shuffle=False,
split='validation',
max_len=opt.max_sequence_length,
workers_num=opt.workers_num,
collate_fn=collate_fn_unimodal_regressor_sequence_dataset)
test_loader = get_unimodal_regressor_sequence_dataset( dataset_file_path=file_path,
features_path=features_path,
ids=ids['test'],
model_type=opt.model_type,
batch_size=opt.batch_size,
shuffle=False,
split='test',
max_len=opt.max_sequence_length,
workers_num=opt.workers_num,
collate_fn=collate_fn_unimodal_regressor_sequence_test)
return train_loader, val_loader, test_loader