-
Notifications
You must be signed in to change notification settings - Fork 133
/
run_test.py
208 lines (170 loc) · 9.24 KB
/
run_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python
# encoding: utf-8
# The MIT License
# Copyright (c) 2018 Ina (David Doukhan - http://www.ina.fr/)
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import unittest
import os
import warnings
from inaSpeechSegmenter import Segmenter
# from inaSpeechSegmenter.features import _wav2feats
from inaSpeechSegmenter.segmenter import _media2feats
from inaSpeechSegmenter.vbx_segmenter import VoiceFemininityScoring, OnnxBackendExtractor
import filecmp
import pandas as pd
import numpy as np
import tempfile
import h5py
from scripts.ina_speech_segmenter_pyro_server import GenderJobServer
class TestInaSpeechSegmenter(unittest.TestCase):
def test_init(self):
Segmenter()
def test_execution(self):
# if this test fails, then you should check to correctness of your
# tensorflow installation
seg = Segmenter()
seg('./media/musanmix.mp3')
def test_silence_features(self):
# test empty signal do not result in warnings
with warnings.catch_warnings(record=True) as w:
_media2feats('./media/silence2sec.wav', None, None, None, 'ffmpeg')
assert len(w) == 0, [str(e) for e in w]
def test_short(self):
seg = Segmenter(vad_engine='sm')
ret = seg('./media/0021.mp3')
ref = [('male', 0, 0.66)]
self.assertEqual(ref, ret)
def test_boundaries(self):
def seg2str(iseg, tseg):
label, start, stop = tseg
return 'seg %d <%s, %f, %f>' % (iseg, label, start, stop)
seg = Segmenter()
ret = seg('./media/musanmix.mp3')
for i in range(len(ret) -1):
curstop = ret[i][2]
nextstart = ret[i+1][1]
self.assertEqual(curstop, nextstart,
'%s VS %s' % (seg2str(i, ret[i]), seg2str(i+1, ret[i+1])))
seg = Segmenter(ffmpeg=None)
ret = seg('./media/musanmix.wav')
for i in range(len(ret) -1):
curstop = ret[i][2]
nextstart = ret[i+1][1]
self.assertEqual(curstop, nextstart,
'%s VS %s' % (seg2str(i, ret[i]), seg2str(i+1, ret[i+1])))
def test_processingresult(self):
seg = Segmenter(vad_engine='sm')
ret = seg('./media/musanmix.mp3')
df = pd.read_csv('./media/musanmix-sm-gender.csv', sep='\t')
ref = [(l.labels, float(l.start), float(l.stop)) for _, l in df.iterrows()]
self.assertEqual([e[0] for e in ref], [e[0] for e in ret])
np.testing.assert_almost_equal([e[1] for e in ref], [e[1] for e in ret])
np.testing.assert_almost_equal([e[2] for e in ref], [e[2] for e in ret])
seg = Segmenter(vad_engine='sm', ffmpeg=None)
ret = seg('./media/musanmix.wav')
df = pd.read_csv('./media/musanmix-sm-gender.csv', sep='\t')
ref = [(l.labels, float(l.start), float(l.stop)) for _, l in df.iterrows()]
self.assertEqual([e[0] for e in ref], [e[0] for e in ret])
np.testing.assert_almost_equal([e[1] for e in ref], [e[1] for e in ret])
np.testing.assert_almost_equal([e[2] for e in ref], [e[2] for e in ret])
def test_batch(self):
seg = Segmenter(vad_engine='sm')
with tempfile.TemporaryDirectory() as tmpdirname:
lout = [os.path.join(tmpdirname, '1.csv'), os.path.join(tmpdirname, '2.csv')]
ret = seg.batch_process(['./media/musanmix.mp3', './media/musanmix.mp3'], lout)
self.assertTrue(filecmp.cmp(lout[0], lout[1]))
self.assertTrue(filecmp.cmp(lout[0], './media/musanmix-sm-gender.csv'))
seg = Segmenter(vad_engine='sm', ffmpeg=None)
with tempfile.TemporaryDirectory() as tmpdirname:
lout = [os.path.join(tmpdirname, '1.1.csv'), os.path.join(tmpdirname, '2.1.csv')]
ret = seg.batch_process(['./media/musanmix.wav', './media/musanmix.wav'], lout)
self.assertTrue(filecmp.cmp(lout[0], lout[1]))
self.assertTrue(filecmp.cmp(lout[0], './media/musanmix-sm-gender.csv'))
def test_praat_export(self):
seg = Segmenter()
with tempfile.TemporaryDirectory() as tmpdirname:
lout = [os.path.join(tmpdirname, '1.TextGrid')]
ret = seg.batch_process(['./media/musanmix.mp3'], lout, output_format='textgrid')
self.assertTrue(filecmp.cmp(lout[0], './media/musanmix-smn-gender.TextGrid'))
def test_batch_not_exists(self):
seg = Segmenter(vad_engine='sm')
with tempfile.TemporaryDirectory() as tmpdirname:
lout = [os.path.join(tmpdirname, '1.csv'), os.path.join(tmpdirname, '2.csv'), os.path.join(tmpdirname, '3.csv')]
ret = seg.batch_process(['./media/musanmix.mp3', './media/doesnotexists.mp3', '/sdfdsF/zefzef/sdf.pp'], lout)
self.assertTrue(filecmp.cmp(lout[0], './media/musanmix-sm-gender.csv'))
def test_program(self):
with tempfile.TemporaryDirectory() as tmpdirname:
ret = os.system('CUDA_VISIBLE_DEVICES="" ./scripts/ina_speech_segmenter.py -i ./media/0021.mp3 -o %s' % tmpdirname)
self.assertEqual(ret, 0, 'ina_speech_segmenter returned error code %d' % ret)
self.assertTrue(os.path.isfile('%s/%s' % (tmpdirname, '0021.csv')))
def test_program_smn(self):
with tempfile.TemporaryDirectory() as tmpdirname:
ret = os.system('CUDA_VISIBLE_DEVICES="" ./scripts/ina_speech_segmenter.py -i ./media/0021.mp3 ./media/musanmix.mp3 ./media/silence2sec.wav -o %s' % tmpdirname)
self.assertEqual(ret, 0, 'ina_speech_segmenter returned error code %d' % ret)
self.assertTrue(filecmp.cmp(os.path.join(tmpdirname, '0021.csv'), './media/0021-smn-gender.csv'))
self.assertTrue(filecmp.cmp(os.path.join(tmpdirname, 'musanmix.csv'), './media/musanmix-smn-gender.csv'))
self.assertTrue(filecmp.cmp(os.path.join(tmpdirname, 'silence2sec.csv'), './media/silence2sec-smn-gender.csv'))
def test_startsec(self):
# test start_sec argument
seg = Segmenter()
start_sec = 2.
for lab, start, stop in seg('./media/musanmix.mp3', start_sec=start_sec):
self.assertGreaterEqual(start, start_sec)
self.assertGreaterEqual(stop, start_sec)
def test_stopsec(self):
# test stop_sec argument
seg = Segmenter()
stop_sec = 5.
for lab, start, stop in seg('./media/musanmix.mp3', stop_sec=stop_sec):
self.assertLessEqual(stop, stop_sec)
self.assertLessEqual(start, stop_sec)
def test_pyroserver(self):
gs = GenderJobServer('./media/pyroserver_test.csv')
lsrc, ldst = gs.get_njobs('')
self.assertEqual(len(lsrc), 7)
self.assertEqual(len(ldst), 7)
self.assertEqual(sorted(lsrc), ['/my_/source_4', 'my_source_1', 'my_source_2', 'my_source_3', 'my_source_5', 'my_source_6', 'my_source_7'])
self.assertEqual(sorted(ldst), ['my_dest_1', 'my_dest_2', 'my_dest_3', 'my_dest_4', 'my_dest_5', 'my_dest_6', 'my_dest_7@@@!!'])
def test_init_vfs(self):
VoiceFemininityScoring()
def test_vf_score(self):
media = './media/lamartine.wav'
desired_vfp_score = 0.534884
vfs = VoiceFemininityScoring(gd_model_criteria="vfp")
d = 6
np.testing.assert_almost_equal(
vfs(media)[0],
desired_vfp_score,
decimal=d,
err_msg='Voice Femininity Score :\nArrays are not almost equal to %d decimals' % d
)
def test_vbx_onnx(self):
with h5py.File('./media/test.h5', 'r') as fid:
ref = fid['lamartineonnx'][:]
feats = fid['lamartinemelbands'][:]
extractor = OnnxBackendExtractor()
ret = extractor.model.run([extractor.label_name], {extractor.input_name: feats.astype(np.float32).transpose()[np.newaxis, :, :]})[0].squeeze()
np.testing.assert_almost_equal(ref, ret, decimal=4)
# def test_vfs_backend_scores(self):
# media = './media/lamartine.wav'
# v_p = VoiceFemininityScoring(backend='pytorch')
# pytorch_backend_score = v_p(media)[0]
# v_o = VoiceFemininityScoring(backend='onnx')
# onnx_backend_score = v_o(media)[0]
# np.testing.assert_almost_equal(pytorch_backend_score, onnx_backend_score, decimal=4)
if __name__ == '__main__':
unittest.main()