forked from azencot-group/SKD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
286 lines (216 loc) · 9.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch.utils.data
import torch.nn.init
import numpy as np
import argparse
from tqdm import tqdm
from model import KoopmanCNN
import torch.optim as optim
from utils import load_dataset
from torch.utils.data import DataLoader
import neptune
def define_args():
parser = argparse.ArgumentParser(description="Sprites SKD")
# general
parser.add_argument('--cuda', action='store_false')
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--seed', type=int, default=1234)
# data
parser.add_argument("--dataset_path", default='./dataset/')
parser.add_argument("--dataset", default='Sprites')
parser.add_argument('--batch_size', type=int, default=32, metavar='N')
# model
parser.add_argument('--arch', type=str, default='KoopmanCNN', choices=['KoopmanCNN'])
parser.add_argument('--conv_dim', type=int, default=32)
parser.add_argument('--dropout', type=float, default=0.2)
parser.add_argument('--rnn', type=str, default='both',
help='encoder decoder LSTM strengths. Can be: "none", "encoder","decoder", "both"')
parser.add_argument('--k_dim', type=int, default=40)
parser.add_argument('--hidden_dim', type=int, default=80, help='the hidden dimension of the output decoder lstm')
parser.add_argument('--lstm_dec_bi', type=bool, default=False) # nimrod added
# loss params
parser.add_argument('--w_rec', type=float, default=15.0)
parser.add_argument('--w_pred', type=float, default=1.0)
parser.add_argument('--w_eigs', type=float, default=1.0)
# eigen values system params
parser.add_argument('--static_size', type=int, default=7)
parser.add_argument('--static_mode', type=str, default='ball', choices=['norm', 'real', 'ball'])
parser.add_argument('--dynamic_mode', type=str, default='real',
choices=['strict', 'thresh', 'ball', 'real', 'none'])
# thresholds
parser.add_argument('--ball_thresh', type=float, default=0.6) # related to 'ball' dynamic mode
parser.add_argument('--dynamic_thresh', type=float, default=0.5) # related to 'thresh', 'real'
parser.add_argument('--eigs_thresh', type=float, default=.5) # related to 'norm' static mode loss
# other
parser.add_argument('--noise', type=str, default='none', help='adding blur to the sample (in the pixel space')
parser.add_argument('--train_classifier', type=bool, default=False)
parser.add_argument('--niter', type=int, default=5, help='number of runs for testing')
parser.add_argument('--type_gt', type=str, default='action')
return parser
def set_seed_device(seed):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
np.random.seed(seed)
# Use cuda if available
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
return device
def create_model(args):
return KoopmanCNN(args)
def create_checkpoint_name(args):
checkpoint_name = f'./weights/sprites/' \
f'nepochs={args.epochs}' + \
f'rnn={args.rnn}' + \
f'rnn_bi={args.lstm_dec_bi}' + \
f'bsz={args.batch_size}' + \
f'_conv={args.conv_dim}' \
f'_lr={args.lr}' \
f'_wd={args.weight_decay}' \
f'_dropout={args.dropout}' + \
f'_wrec={args.w_rec}' \
f'_wpred={args.w_pred}' \
f'_weigs={args.w_eigs}' + \
f'_kdim={args.k_dim}' \
f'_hdim={args.hidden_dim}' \
f'_static={args.static_size}' \
f'_s_mode={args.static_mode}' + \
f'_d_mode={args.dynamic_mode}' + \
f'_eig_th={args.eigs_thresh}' \
f'_b_th={args.ball_thresh}' \
f'_d_th={args.dynamic_thresh}' \
f'_noise={args.noise}' \
f'.model'
return checkpoint_name
def save_checkpoint(epoch, checkpoints):
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'losses': epoch_losses_test},
checkpoints)
def load_checkpoint(model, optimizer, checkpoint_name):
try:
print("Loading Checkpoint from '{}'".format(checkpoint_name))
checkpoint = torch.load(checkpoint_name)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch_losses_test = checkpoint['losses']
print("Resuming Training From Epoch {}".format(start_epoch))
return start_epoch, epoch_losses_test
except:
print("No Checkpoint Exists At '{}'.Start Fresh Training".format(checkpoint_name))
return 0, []
def reorder(sequence):
return sequence.permute(0, 1, 4, 2, 3)
def agg_losses(LOSSES, losses):
if not LOSSES:
LOSSES = [[] for _ in range(len(losses))]
for jj, loss in enumerate(losses):
LOSSES[jj].append(loss.item())
return LOSSES
def log_losses(epoch, losses_tr, losses_te, names):
losses_avg_tr, losses_avg_te = [], []
for loss in losses_tr:
losses_avg_tr.append(np.mean(loss))
for loss in losses_te:
losses_avg_te.append(np.mean(loss))
loss_str_tr = 'Epoch {}, TRAIN: '.format(epoch + 1)
for jj, loss in enumerate(losses_avg_tr):
loss_str_tr += '{}={:.3e}, \t'.format(names[jj], loss)
print(loss_str_tr)
loss_str_te = 'Epoch {}, TEST: '.format(epoch + 1)
for jj, loss in enumerate(losses_avg_te):
loss_str_te += '{}={:.3e}, \t'.format(names[jj], loss)
print(loss_str_te)
return losses_avg_tr[0], losses_avg_te[0]
def train(args):
args.num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
args.checkpoint_path = checkpoint_name
for epoch in range(start_epoch, args.epochs):
# Log the number of the epoch.
run['epoch'] = epoch
print("Running Epoch : {}".format(epoch + 1))
model.train()
losses_agg_tr, losses_agg_te = [], []
for i, data in tqdm(enumerate(train_loader, 1)):
X = reorder(data['images']).to(args.device)
optimizer.zero_grad()
outputs = model(X)
losses = model.loss(X, outputs)
losses[0].backward()
optimizer.step()
losses_agg_tr = agg_losses(losses_agg_tr, losses)
# Log the losses.
run['train/recon'].append(losses[0].item())
run['train/pred1'].append(losses[1].item())
run['train/pred2'].append(losses[2].item())
run['train/spectral'].append(losses[3].item())
model.eval()
with torch.no_grad():
print('Evaulating the model')
for i, data in tqdm(enumerate(test_loader, 1)):
X = reorder(data['images']).to(args.device)
outputs = model(X)
losses = model.loss(X, outputs)
losses_agg_te = agg_losses(losses_agg_te, losses)
# Log the losses.
run['test/recon'].append(losses[0].item())
run['test/pred1'].append(losses[1].item())
run['test/pred2'].append(losses[2].item())
run['test/spectral'].append(losses[3].item())
# log losses
loss_avg_tr, loss_avg_te = log_losses(epoch, losses_agg_tr, losses_agg_te, model.names)
epoch_losses_test.append(loss_avg_te)
# save model checkpoint
save_checkpoint(epoch, checkpoint_name)
run.stop()
print("Training is complete")
if __name__ == '__main__':
# Initialize neptune.
run = neptune.init_run(project="azencot-group/koopman-vae",
api_token="eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiJlNjg4NDkxMS04N2NhLTRkOTctYjY0My05NDY2OGU0NGJjZGMifQ==",
)
# hyperparameters
parser = define_args()
args = parser.parse_args()
# Log the hyperparameters used and the name.
run['config/hyperparameters'] = vars(args)
# data parameters
args.n_frames = 8
args.n_channels = 3
args.n_height = 64
args.n_width = 64
print(args)
# set PRNG seed
args.device = set_seed_device(args.seed)
# load data
train_data, test_data = load_dataset(args)
train_loader = DataLoader(train_data,
num_workers=4,
batch_size=args.batch_size, # 128
shuffle=True,
drop_last=True,
pin_memory=True)
test_loader = DataLoader(test_data,
num_workers=4,
batch_size=args.batch_size, # 128
shuffle=False,
drop_last=True,
pin_memory=True)
# create model
model = create_model(args).to(device=args.device)
# optimizer
optimizer = optim.Adam(model.parameters(), args.lr, weight_decay=args.weight_decay)
# create model checkpoint name
checkpoint_name = create_checkpoint_name(args)
# load the model
start_epoch, epoch_losses_test = load_checkpoint(model, optimizer, checkpoint_name)
print("number of model parameters: {}".format(sum(param.numel() for param in model.parameters())))
train(args)