-
Notifications
You must be signed in to change notification settings - Fork 10
/
main_v2.py
executable file
·46 lines (39 loc) · 1.33 KB
/
main_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
import random
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.init as init
import numpy as np
from dataset_v2 import Dictionary, SelfCriticalDataset
from models import Model
import utils
import opts
from train import train
def weights_init_kn(m):
if isinstance(m, nn.Linear):
nn.init.kaiming_normal(m.weight.data, a=0.01)
if __name__ == '__main__':
opt = opts.parse_opt()
seed = 0
if opt.seed == 0:
seed = random.randint(1, 10000)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(args.seed)
else:
seed = opt.seed
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.benchmark = True
dictionary = Dictionary.load_from_file('data/dictionary.pkl')
opt.ntokens = dictionary.ntoken
model = Model(opt)
model.apply(weights_init_kn)
model = nn.DataParallel(model).cuda()
train_dset = SelfCriticalDataset(opt.split, dictionary, opt)
train_loader = DataLoader(train_dset, opt.batch_size, shuffle=True, num_workers=0)
opt.use_all = 1
eval_dset = SelfCriticalDataset(opt.split_test, dictionary, opt)
eval_loader = DataLoader(eval_dset, opt.batch_size, shuffle=False, num_workers=0)
train(model, train_loader, eval_loader, opt)