Skip to content
This repository has been archived by the owner on Aug 9, 2024. It is now read-only.

Latest commit

 

History

History
118 lines (88 loc) · 3.65 KB

README.md

File metadata and controls

118 lines (88 loc) · 3.65 KB

Launch MPI Job benchmark using kubebench

This tutorial will show an example to launching OpenMPI benchmark job on Kubeflow

Quick Start

Prerequisites

  • Kubernetes >= 1.10
  • Ksonnet >= 0.11
  • Kubeflow master
    • Required modules: argo, mpi-operator
  • For the quick-starter installation, Kubernetes nodes need to support NFS mounting

Installation

  • Init Project

    ks init ${BENCHMARK_PROJECT} && cd ${BENCHMARK_PROJECT}
    ks registry add kubeflow github.com/kubeflow/kubeflow/tree/master/kubeflow
    
  • Setup NFS used by Kubebench

    Please check page to install Kubebench quick-starter package

  • Setup required components

    # Install dependency packages 
    ks pkg install kubeflow/common@master
    ks pkg install kubeflow/argo@master
    ks pkg install kubeflow/mpi-job@master
    ks pkg install kubeflow/kubebench@master
    
    # Generate Manifests
    ks generate argo argo
    ks generate mpi-operator mpi-operator
    
    # Customize your deployment
    ks param set mpi-operator image seedjeffwan/mpi-operator:latest
    
    # Deploy required components
    ks apply default
    

    Note: Default mpi-operator image doesn't have latest change. That's why we use self built image instead.

Run a Kubebench Job

  • Configure Kubebench job

    ks generate kubebench-job ${JOB_NAME}
       
    ks param set ${JOB_NAME} mainJobConfig mpi/mpi-job-dummy.yaml
    ks param set ${JOB_NAME} mainJobKsPackage mpi-job
    ks param set ${JOB_NAME} mainJobKsPrototype mpi-job-custom
    ks param set ${JOB_NAME} mainJobKsRegistry github.com/kubeflow/kubeflow/tree/master/kubeflow
       
    ks param set ${JOB_NAME} controllerImage seedjeffwan/configurator:latest
    ks param set ${JOB_NAME} postJobImage seedjeffwan/mpi-post-processor:latest
    
    # Optional
    ks param set ${JOB_NAME} githubTokenSecret github-token
    ks param set ${JOB_NAME} githubTokenSecretKey GITHUB_TOKEN
    

    Note:

    • MPI Job configuration file mpi/mpi-job-dummy.yaml is already in your NFS config folder.
    • Without github token, you might run into API rate limits. Generate one at Github Token and create a kubernetes secret file.
    apiVersion: v1
    kind: Secret
    metadata:
      name: github-token
    type: Opaque
    data:
      GITHUB_TOKEN: YOUR_BASE64_ENCODED_TOKEN
    
  • Launch MPI Training job

    ks apply default -c ${JOB_NAME}
    

FAQ

How can I look at benchmark workflow in Argo UI?

Argo UI by default is backed by Amabassdor that we didn't install in this tutorial. We need to make minor change to expose Argo UI to frontend.

Edit Argo UI deployment resource file by kubectl edit deployment argo-ui. Look for BASE_HREF, change environment value from /argo/ to /.

Wait for the new pod start, then run kubectl port-forward deployment/argo-ui 8001:8001 to proxy port. Now you can visit localhost:8001 for workflow details.

What does the output looks like?

kubectl port-forward deployment/kubebench-nfs-deploy 8000:80 and open localhost:8000 to check experiment outputs.

|-- config
|   `-- mpi
|       `-- mpi-job-dummy.yaml
|
|-- data
`-- experiments
    |-- mpi-job-dummy-201902170707-8i0d
    |   |-- config
    |   |   |-- kf-job-manifest.yaml
    |   |   `-- mpi-job-dummy.yaml
    |   |-- output
    |   |   `-- mpi-job-dummy-201902170707-8i0d-launcher-82mlc
    |   `-- result
    |       `-- result.json
    `-- report.csv