Dezvoltarea unei aplicatii didactice care sa ajute studentii la medicina sa invete.
In procesul de invatare desfasurat de un student la medicina ar fi utila o aplicatie (mobila) care sa ii prezinte vizual informatii relevante despre organele si bolile investigate. Astfel se doreste o aplicatie care, plecand de la informatii preluate in format RMN sau CT, sa permita vizualizarea 3D a unui organ (in intregime sau partial, din diferite unghiuri, reliefand anumite detalii – de ex vizualizarea inimii cu camerele ei sau doar a unei camere, sistemul vascular din inima, etc.), precum si a unor defecte posibile (identificarea automata a acestor defecte si vizualizarea lor – de ex. Fibroza atriala).
- Dezvoltare flow principal pentru aplicatie
- Incarcare si vizualizare imagine medicala (variate modalitati medicale – de ex. RMN, CT, imagini 2D sau 3D)
- Dezvoltare componenta inteligenta
- Antrenarea si validarea unui model (sau a 2 modele) de identificare automata a defectelor (semnalate prin conturul si prin textura regiunii respective)
- Testarea modelului/modelelor pe imagini noi - integrarea modelului (clasificatorului) in aplicatie
- Imbunatatire componenta inteligenta
- Din perspectiva calitatii procesului de invatare automata
- Din perspectiva complexitatii temporale si spatiale aferenta clasificatorului
- Din perspectiva clientului (utilizarii aplicatiei de catre student/medic)
Imagini
Evaluare
- VISCERAL tool http://www.visceral.eu/resources/evaluatesegmentation-software/
- Descriere metrici https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-015-0068-x
Metode de lucru
- Vezhnevets, Vladimir, and Vadim Konouchine. "GrowCut: Interactive multi-label ND image segmentation by cellular automata." proc. of Graphicon. Vol. 1. No. 4. 2005.
- Kauffmann, Claude, and Nicolas Piché. "Seeded ND medical image segmentation by cellular automaton on GPU." International journal of computer assisted radiology and surgery 5.3 (2010): 251-262.
- Peng Peng, Karim Lekadir, Ali Gooya, Ling Shao, Steffen E. Petersen, Alejandro F. Frangi, A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging, Magn Reson Mater Phy (2016) 29:155–195
- Catalina Tobon-Gomez, Jochen Peters, Juergen Weese, Karen Pinto, Rashed Karim, Tobias Schaeffter, Reza Razavi, and Kawal S. Rhode, Left Atrial Segmentation Challenge: A Unified Benchmarking Framework, STACOM 2013, LNCS 8330, pp. 1–13, 2014
- Catalina Tobon-Gomez et al., Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets, IEEE Transactions on Medical Imaging, 2015
- Bram van Ginneken, Fifty years of computer analysis in chest imaging: rule-based, Radiol Phys Technol, 2017
- Lequan Yu, Xin Yang, Jing Qin and Pheng-Ann Heng 3D FractalNet: Dense volumetric segmentation for cardiovascular MRI volumes, 2017
- Jelmer M. Wolterink, Tim Leiner, Max A. Viergever and Ivana Isgum Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease, 2017
- Rahil Shahzad, Shan Gao, Qian Tao, Oleh Dzyubachyk and Rob van der Geest, Automated cardiovascular segmentation in patients with congenital heart disease from 3D CMR scans: Combining multi-atlases and level-sets, 2017
- Rezaei, Mina, Haojin Yang, and Christoph Meinel. "Whole heart and great vessel segmentation with context-aware of generative adversarial networks." Bildverarbeitung für die Medizin 2018. Springer Vieweg, Berlin, Heidelberg, 2018. 353-358.
- Yu, Lequan, et al. "Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2017.
- Payer, Christian, et al. "Multi-label whole heart segmentation using CNNs and anatomical label configurations." International Workshop on Statistical Atlases and Computational Models of the Heart. Springer, Cham, 2017.
- Yang, Guang, et al. "Multiview Sequential Learning and Dilated Residual Learning for a Fully Automatic Delineation of the Left Atrium and Pulmonary Veins from Late Gadolinium-Enhanced Cardiac MRI Images." 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018.
- Zhang, Tinghong, et al. "Multiple Attention Fully Convolutional Network for Automated Ventricle Segmentation in Cardiac Magnetic Resonance Imaging." Journal of Medical Imaging and Health Informatics 9.5 (2019): 1037-1045.
- Zhang, Dong, et al. "Direct Quantification for Coronary Artery Stenosis Using Multiview Learning." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.
- Zhuang, Xiahai, et al. "Evaluation of Algorithms for Multi-Modality Whole Heart Segmentation: An Open-Access Grand Challenge." arXiv preprint arXiv:1902.07880 (2019).