diff --git a/notebooks/02a_s2s_modeling.ipynb b/notebooks/02a_s2s_modeling.ipynb index 69c30eb..b9716db 100644 --- a/notebooks/02a_s2s_modeling.ipynb +++ b/notebooks/02a_s2s_modeling.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "6dbd3180-4d25-46b7-90fc-f8db79661301", "metadata": {}, "outputs": [], @@ -29,10 +29,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "d8dc2f0a-5b6d-4382-87a8-fe2aecd1b786", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/burg/home/jn2808/.conda/envs/bench/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], "source": [ "import torch\n", "from torch.utils.data import DataLoader\n", @@ -72,10 +81,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "562a1d04-95f7-4544-ac2a-d4f1bd092941", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/burg/home/jn2808/.conda/envs/bench/lib/python3.9/site-packages/gribapi/__init__.py:23: UserWarning: ecCodes 2.31.0 or higher is recommended. You are running version 2.30.0\n", + " warnings.warn(\n" + ] + } + ], "source": [ "# Specify train/val years + test benchmark\n", "train_years = np.arange(2016, 2022)\n", @@ -117,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "9b6144b9-ee33-449b-82ed-371ba1bc61a1", "metadata": {}, "outputs": [], @@ -133,7 +151,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "5977a244-5138-418c-b4be-886fadfb6230", "metadata": {}, "outputs": [], @@ -147,10 +165,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "1bc1bfee-e65a-4f20-b4ac-28067d3fdf92", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train/val x: torch.Size([4, 60, 121, 240])\n", + "train/val y: torch.Size([4, 1, 60, 121, 240])\n" + ] + } + ], "source": [ "print(f'train/val x: {train_x.shape}') # Each tensor has the shape of (batch_size, params, lat, lon)\n", "print(f'train/val y: {train_y.shape}') # Each tensor has the shape of (batch_size, step_size, params, lat, lon)" @@ -158,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "1c4657f3-4bb1-4a13-8595-5f8a1d8b5054", "metadata": {}, "outputs": [], @@ -188,22 +215,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "b1e23cbe-cf32-407a-95a0-3536298f6391", "metadata": {}, "outputs": [], "source": [ "# Specify model specifications\n", "\n", - "model = cnn.UNet(input_size=train_x.shape[1], output_size=train_x.shape[1], dropout=True, dropout_rate=0.1)\n" + "model = cnn.UNet(input_size=train_x.shape[1], output_size=train_x.shape[1])\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "036344fb-badd-49ef-9edc-22444c43a1e1", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([4, 60, 121, 240])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Run the model to get output\n", "preds = model(train_x)\n", @@ -221,7 +259,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "9f5fac83-d23e-47c2-9919-e7804640b3f8", "metadata": {}, "outputs": [], @@ -232,10 +270,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "99308b7a-424b-4c9a-a76e-a002c68f6ed8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.0959651470184326\n" + ] + } + ], "source": [ "# Compute error\n", "preds = model(train_x)\n",