-
Notifications
You must be signed in to change notification settings - Fork 6
/
micromod.c
668 lines (631 loc) · 19.4 KB
/
micromod.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#include "micromod.h"
#define MAX_CHANNELS 16
#define FP_SHIFT 14
#define FP_ONE 16384
#define FP_MASK 16383
static const char *MICROMOD_VERSION = "Micromod Protracker replay 20180625 (c)[email protected]";
struct note {
unsigned short key;
unsigned char instrument, effect, param;
};
struct instrument {
unsigned char volume, fine_tune;
unsigned long loop_start, loop_length;
signed char *sample_data;
};
struct channel {
struct note note;
unsigned short period, porta_period;
unsigned long sample_offset, sample_idx, step;
unsigned char volume, panning, fine_tune, ampl, mute;
unsigned char id, instrument, assigned, porta_speed, pl_row, fx_count;
unsigned char vibrato_type, vibrato_phase, vibrato_speed, vibrato_depth;
unsigned char tremolo_type, tremolo_phase, tremolo_speed, tremolo_depth;
signed char tremolo_add, vibrato_add, arpeggio_add;
};
static const unsigned short fine_tuning[] = {
4340, 4308, 4277, 4247, 4216, 4186, 4156, 4126,
4096, 4067, 4037, 4008, 3979, 3951, 3922, 3894
};
static const unsigned short arp_tuning[] = {
4096, 3866, 3649, 3444, 3251, 3069, 2896, 2734,
2580, 2435, 2299, 2170, 2048, 1933, 1825, 1722
};
static const unsigned char sine_table[] = {
0, 24, 49, 74, 97, 120, 141, 161, 180, 197, 212, 224, 235, 244, 250, 253,
255, 253, 250, 244, 235, 224, 212, 197, 180, 161, 141, 120, 97, 74, 49, 24
};
static signed char *module_data;
static unsigned char *pattern_data, *sequence;
static long song_length, restart, num_patterns, num_channels;
static struct instrument instruments[ 32 ];
static long sample_rate, gain, c2_rate, tick_len, tick_offset;
static long pattern, break_pattern, row, next_row, tick;
static long speed, pl_count, pl_channel, random_seed;
static struct channel channels[ MAX_CHANNELS ];
static long calculate_num_patterns( signed char *module_header ) {
long num_patterns, order_entry, pattern;
num_patterns = 0;
for( pattern = 0; pattern < 128; pattern++ ) {
order_entry = module_header[ 952 + pattern ] & 0x7F;
if( order_entry >= num_patterns ) num_patterns = order_entry + 1;
}
return num_patterns;
}
static long calculate_num_channels( signed char *module_header ) {
long numchan;
switch( ( module_header[ 1082 ] << 8 ) | module_header[ 1083 ] ) {
case 0x4b2e: /* M.K. */
case 0x4b21: /* M!K! */
case 0x542e: /* N.T. */
case 0x5434: /* FLT4 */
numchan = 4;
break;
case 0x484e: /* xCHN */
numchan = module_header[ 1080 ] - 48;
break;
case 0x4348: /* xxCH */
numchan = ( ( module_header[ 1080 ] - 48 ) * 10 ) + ( module_header[ 1081 ] - 48 );
break;
default: /* Not recognised. */
numchan = 0;
break;
}
if( numchan > MAX_CHANNELS ) numchan = 0;
return numchan;
}
static long unsigned_short_big_endian( signed char *buf, long offset ) {
return ( ( buf[ offset ] & 0xFF ) << 8 ) | ( buf[ offset + 1 ] & 0xFF );
}
static void set_tempo( long tempo ) {
tick_len = ( ( sample_rate << 1 ) + ( sample_rate >> 1 ) ) / tempo;
}
static void update_frequency( struct channel *chan ) {
long period, volume;
unsigned long freq;
period = chan->period + chan->vibrato_add;
period = period * arp_tuning[ chan->arpeggio_add ] >> 11;
period = ( period >> 1 ) + ( period & 1 );
if( period < 14 ) period = 6848;
freq = c2_rate * 428 / period;
chan->step = ( freq << FP_SHIFT ) / sample_rate;
volume = chan->volume + chan->tremolo_add;
if( volume > 64 ) volume = 64;
if( volume < 0 ) volume = 0;
chan->ampl = ( volume * gain ) >> 5;
}
static void tone_portamento( struct channel *chan ) {
long source, dest;
source = chan->period;
dest = chan->porta_period;
if( source < dest ) {
source += chan->porta_speed;
if( source > dest ) source = dest;
} else if( source > dest ) {
source -= chan->porta_speed;
if( source < dest ) source = dest;
}
chan->period = source;
}
static void volume_slide( struct channel *chan, long param ) {
long volume;
volume = chan->volume + ( param >> 4 ) - ( param & 0xF );
if( volume < 0 ) volume = 0;
if( volume > 64 ) volume = 64;
chan->volume = volume;
}
static long waveform( long phase, long type ) {
long amplitude = 0;
switch( type & 0x3 ) {
case 0: /* Sine. */
amplitude = sine_table[ phase & 0x1F ];
if( ( phase & 0x20 ) > 0 ) amplitude = -amplitude;
break;
case 1: /* Saw Down. */
amplitude = 255 - ( ( ( phase + 0x20 ) & 0x3F ) << 3 );
break;
case 2: /* Square. */
amplitude = 255 - ( ( phase & 0x20 ) << 4 );
break;
case 3: /* Random. */
amplitude = ( random_seed >> 20 ) - 255;
random_seed = ( random_seed * 65 + 17 ) & 0x1FFFFFFF;
break;
}
return amplitude;
}
static void vibrato( struct channel *chan ) {
chan->vibrato_add = waveform( chan->vibrato_phase, chan->vibrato_type ) * chan->vibrato_depth >> 7;
}
static void tremolo( struct channel *chan ) {
chan->tremolo_add = waveform( chan->tremolo_phase, chan->tremolo_type ) * chan->tremolo_depth >> 6;
}
static void trigger( struct channel *channel ) {
long period, ins;
ins = channel->note.instrument;
if( ins > 0 && ins < 32 ) {
channel->assigned = ins;
channel->sample_offset = 0;
channel->fine_tune = instruments[ ins ].fine_tune;
channel->volume = instruments[ ins ].volume;
if( instruments[ ins ].loop_length > 0 && channel->instrument > 0 )
channel->instrument = ins;
}
if( channel->note.effect == 0x09 ) {
channel->sample_offset = ( channel->note.param & 0xFF ) << 8;
} else if( channel->note.effect == 0x15 ) {
channel->fine_tune = channel->note.param;
}
if( channel->note.key > 0 ) {
period = ( channel->note.key * fine_tuning[ channel->fine_tune & 0xF ] ) >> 11;
channel->porta_period = ( period >> 1 ) + ( period & 1 );
if( channel->note.effect != 0x3 && channel->note.effect != 0x5 ) {
channel->instrument = channel->assigned;
channel->period = channel->porta_period;
channel->sample_idx = ( channel->sample_offset << FP_SHIFT );
if( channel->vibrato_type < 4 ) channel->vibrato_phase = 0;
if( channel->tremolo_type < 4 ) channel->tremolo_phase = 0;
}
}
}
static void channel_row( struct channel *chan ) {
long effect, param, volume, period;
effect = chan->note.effect;
param = chan->note.param;
chan->vibrato_add = chan->tremolo_add = chan->arpeggio_add = chan->fx_count = 0;
if( !( effect == 0x1D && param > 0 ) ) {
/* Not note delay. */
trigger( chan );
}
switch( effect ) {
case 0x3: /* Tone Portamento.*/
if( param > 0 ) chan->porta_speed = param;
break;
case 0x4: /* Vibrato.*/
if( ( param & 0xF0 ) > 0 ) chan->vibrato_speed = param >> 4;
if( ( param & 0x0F ) > 0 ) chan->vibrato_depth = param & 0xF;
vibrato( chan );
break;
case 0x6: /* Vibrato + Volume Slide.*/
vibrato( chan );
break;
case 0x7: /* Tremolo.*/
if( ( param & 0xF0 ) > 0 ) chan->tremolo_speed = param >> 4;
if( ( param & 0x0F ) > 0 ) chan->tremolo_depth = param & 0xF;
tremolo( chan );
break;
case 0x8: /* Set Panning (0-127). Not for 4-channel Protracker. */
if( num_channels != 4 ) {
chan->panning = ( param < 128 ) ? param : 127;
}
break;
case 0xB: /* Pattern Jump.*/
if( pl_count < 0 ) {
break_pattern = param;
next_row = 0;
}
break;
case 0xC: /* Set Volume.*/
chan->volume = param > 64 ? 64 : param;
break;
case 0xD: /* Pattern Break.*/
if( pl_count < 0 ) {
if( break_pattern < 0 ) break_pattern = pattern + 1;
next_row = ( param >> 4 ) * 10 + ( param & 0xF );
if( next_row >= 64 ) next_row = 0;
}
break;
case 0xF: /* Set Speed.*/
if( param > 0 ) {
if( param < 32 ) tick = speed = param;
else set_tempo( param );
}
break;
case 0x11: /* Fine Portamento Up.*/
period = chan->period - param;
chan->period = period < 0 ? 0 : period;
break;
case 0x12: /* Fine Portamento Down.*/
period = chan->period + param;
chan->period = period > 65535 ? 65535 : period;
break;
case 0x14: /* Set Vibrato Waveform.*/
if( param < 8 ) chan->vibrato_type = param;
break;
case 0x16: /* Pattern Loop.*/
if( param == 0 ) /* Set loop marker on this channel. */
chan->pl_row = row;
if( chan->pl_row < row && break_pattern < 0 ) { /* Marker valid. */
if( pl_count < 0 ) { /* Not already looping, begin. */
pl_count = param;
pl_channel = chan->id;
}
if( pl_channel == chan->id ) { /* Next Loop.*/
if( pl_count == 0 ) { /* Loop finished. */
/* Invalidate current marker. */
chan->pl_row = row + 1;
} else { /* Loop. */
next_row = chan->pl_row;
}
pl_count--;
}
}
break;
case 0x17: /* Set Tremolo Waveform.*/
if( param < 8 ) chan->tremolo_type = param;
break;
case 0x1A: /* Fine Volume Up.*/
volume = chan->volume + param;
chan->volume = volume > 64 ? 64 : volume;
break;
case 0x1B: /* Fine Volume Down.*/
volume = chan->volume - param;
chan->volume = volume < 0 ? 0 : volume;
break;
case 0x1C: /* Note Cut.*/
if( param <= 0 ) chan->volume = 0;
break;
case 0x1E: /* Pattern Delay.*/
tick = speed + speed * param;
break;
}
update_frequency( chan );
}
static void channel_tick( struct channel *chan ) {
long effect, param, period;
effect = chan->note.effect;
param = chan->note.param;
chan->fx_count++;
switch( effect ) {
case 0x1: /* Portamento Up.*/
period = chan->period - param;
chan->period = period < 0 ? 0 : period;
break;
case 0x2: /* Portamento Down.*/
period = chan->period + param;
chan->period = period > 65535 ? 65535 : period;
break;
case 0x3: /* Tone Portamento.*/
tone_portamento( chan );
break;
case 0x4: /* Vibrato.*/
chan->vibrato_phase += chan->vibrato_speed;
vibrato( chan );
break;
case 0x5: /* Tone Porta + Volume Slide.*/
tone_portamento( chan );
volume_slide( chan, param );
break;
case 0x6: /* Vibrato + Volume Slide.*/
chan->vibrato_phase += chan->vibrato_speed;
vibrato( chan );
volume_slide( chan, param );
break;
case 0x7: /* Tremolo.*/
chan->tremolo_phase += chan->tremolo_speed;
tremolo( chan );
break;
case 0xA: /* Volume Slide.*/
volume_slide( chan, param );
break;
case 0xE: /* Arpeggio.*/
if( chan->fx_count > 2 ) chan->fx_count = 0;
if( chan->fx_count == 0 ) chan->arpeggio_add = 0;
if( chan->fx_count == 1 ) chan->arpeggio_add = param >> 4;
if( chan->fx_count == 2 ) chan->arpeggio_add = param & 0xF;
break;
case 0x19: /* Retrig.*/
if( chan->fx_count >= param ) {
chan->fx_count = 0;
chan->sample_idx = 0;
}
break;
case 0x1C: /* Note Cut.*/
if( param == chan->fx_count ) chan->volume = 0;
break;
case 0x1D: /* Note Delay.*/
if( param == chan->fx_count ) trigger( chan );
break;
}
if( effect > 0 ) update_frequency( chan );
}
static long sequence_row( void ) {
long song_end, chan_idx, pat_offset;
long effect, param;
struct note *note;
song_end = 0;
if( next_row < 0 ) {
break_pattern = pattern + 1;
next_row = 0;
}
if( break_pattern >= 0 ) {
if( break_pattern >= song_length ) break_pattern = next_row = 0;
if( break_pattern <= pattern ) song_end = 1;
pattern = break_pattern;
for( chan_idx = 0; chan_idx < num_channels; chan_idx++ ) channels[ chan_idx ].pl_row = 0;
break_pattern = -1;
}
row = next_row;
next_row = row + 1;
if( next_row >= 64 ) next_row = -1;
pat_offset = ( sequence[ pattern ] * 64 + row ) * num_channels * 4;
for( chan_idx = 0; chan_idx < num_channels; chan_idx++ ) {
note = &channels[ chan_idx ].note;
note->key = ( pattern_data[ pat_offset ] & 0xF ) << 8;
note->key |= pattern_data[ pat_offset + 1 ];
note->instrument = pattern_data[ pat_offset + 2 ] >> 4;
note->instrument |= pattern_data[ pat_offset ] & 0x10;
effect = pattern_data[ pat_offset + 2 ] & 0xF;
param = pattern_data[ pat_offset + 3 ];
pat_offset += 4;
if( effect == 0xE ) {
effect = 0x10 | ( param >> 4 );
param &= 0xF;
}
if( effect == 0 && param > 0 ) effect = 0xE;
note->effect = effect;
note->param = param;
channel_row( &channels[ chan_idx ] );
}
return song_end;
}
static long sequence_tick( void ) {
long song_end, chan_idx;
song_end = 0;
if( --tick <= 0 ) {
tick = speed;
song_end = sequence_row();
} else {
for( chan_idx = 0; chan_idx < num_channels; chan_idx++ )
channel_tick( &channels[ chan_idx ] );
}
return song_end;
}
static void resample( struct channel *chan, short *buf, long offset, long count ) {
unsigned long epos;
unsigned long buf_idx = offset << 1;
unsigned long buf_end = ( offset + count ) << 1;
unsigned long sidx = chan->sample_idx;
unsigned long step = chan->step;
unsigned long llen = instruments[ chan->instrument ].loop_length;
unsigned long lep1 = instruments[ chan->instrument ].loop_start + llen;
signed char *sdat = instruments[ chan->instrument ].sample_data;
short ampl = buf && !chan->mute ? chan->ampl : 0;
short lamp = ampl * ( 127 - chan->panning ) >> 5;
short ramp = ampl * chan->panning >> 5;
while( buf_idx < buf_end ) {
if( sidx >= lep1 ) {
/* Handle loop. */
if( llen <= FP_ONE ) {
/* One-shot sample. */
sidx = lep1;
break;
}
/* Subtract loop-length until within loop points. */
while( sidx >= lep1 ) sidx -= llen;
}
/* Calculate sample position at end. */
epos = sidx + ( ( buf_end - buf_idx ) >> 1 ) * step;
/* Most of the cpu time is spent here. */
if( lamp || ramp ) {
/* Only mix to end of current loop. */
if( epos > lep1 ) epos = lep1;
if( lamp && ramp ) {
/* Mix both channels. */
while( sidx < epos ) {
ampl = sdat[ sidx >> FP_SHIFT ];
buf[ buf_idx++ ] += ampl * lamp >> 2;
buf[ buf_idx++ ] += ampl * ramp >> 2;
sidx += step;
}
} else {
/* Only mix one channel. */
if( ramp ) buf_idx++;
while( sidx < epos ) {
buf[ buf_idx ] += sdat[ sidx >> FP_SHIFT ] * ampl;
buf_idx += 2;
sidx += step;
}
buf_idx &= -2;
}
} else {
/* No need to mix.*/
buf_idx = buf_end;
sidx = epos;
}
}
chan->sample_idx = sidx;
}
/*
Returns a string containing version information.
*/
const char* micromod_get_version( void ) {
return MICROMOD_VERSION;
}
/*
Calculate the length in bytes of a module file given the 1084-byte header.
Returns -1 if the data is not recognised as a module.
*/
long micromod_calculate_mod_file_len( signed char *module_header ) {
long length, numchan, inst_idx;
numchan = calculate_num_channels( module_header );
if( numchan <= 0 ) return -1;
length = 1084 + 4 * numchan * 64 * calculate_num_patterns( module_header );
for( inst_idx = 1; inst_idx < 32; inst_idx++ )
length += unsigned_short_big_endian( module_header, inst_idx * 30 + 12 ) * 2;
return length;
}
/*
Set the player to play the specified module data.
Returns -1 if the data is not recognised as a module.
Returns -2 if the sampling rate is less than 8000hz.
*/
long micromod_initialise( signed char *data, long sampling_rate ) {
struct instrument *inst;
long sample_data_offset, inst_idx;
long sample_length, volume, fine_tune, loop_start, loop_length;
num_channels = calculate_num_channels( data );
if( num_channels <= 0 ) {
num_channels = 0;
return -1;
}
if( sampling_rate < 8000 ) return -2;
module_data = data;
sample_rate = sampling_rate;
song_length = module_data[ 950 ] & 0x7F;
restart = module_data[ 951 ] & 0x7F;
if( restart >= song_length ) restart = 0;
sequence = (unsigned char *) module_data + 952;
pattern_data = (unsigned char *) module_data + 1084;
num_patterns = calculate_num_patterns( module_data );
sample_data_offset = 1084 + num_patterns * 64 * num_channels * 4;
for( inst_idx = 1; inst_idx < 32; inst_idx++ ) {
inst = &instruments[ inst_idx ];
sample_length = unsigned_short_big_endian( module_data, inst_idx * 30 + 12 ) * 2;
fine_tune = module_data[ inst_idx * 30 + 14 ] & 0xF;
inst->fine_tune = ( fine_tune & 0x7 ) - ( fine_tune & 0x8 ) + 8;
volume = module_data[ inst_idx * 30 + 15 ] & 0x7F;
inst->volume = volume > 64 ? 64 : volume;
loop_start = unsigned_short_big_endian( module_data, inst_idx * 30 + 16 ) * 2;
loop_length = unsigned_short_big_endian( module_data, inst_idx * 30 + 18 ) * 2;
if( loop_start + loop_length > sample_length ) {
if( loop_start / 2 + loop_length <= sample_length ) {
/* Some old modules have loop start in bytes. */
loop_start = loop_start / 2;
} else {
loop_length = sample_length - loop_start;
}
}
if( loop_length < 4 ) {
loop_start = sample_length;
loop_length = 0;
}
inst->loop_start = loop_start << FP_SHIFT;
inst->loop_length = loop_length << FP_SHIFT;
inst->sample_data = module_data + sample_data_offset;
sample_data_offset += sample_length;
}
c2_rate = ( num_channels > 4 ) ? 8363 : 8287;
gain = ( num_channels > 4 ) ? 32 : 64;
micromod_mute_channel( -1 );
micromod_set_position( 0 );
return 0;
}
/*
Obtains song and instrument names from the module.
The song name is returned as instrument 0.
The name is copied into the location pointed to by string,
and is at most 23 characters long, including the trailing null.
*/
void micromod_get_string( long instrument, char *string ) {
long index, offset, length, character;
if( num_channels <= 0 ) {
string[ 0 ] = 0;
return;
}
offset = 0;
length = 20;
if( instrument > 0 && instrument < 32 ) {
offset = ( instrument - 1 ) * 30 + 20;
length = 22;
}
for( index = 0; index < length; index++ ) {
character = module_data[ offset + index ];
if( character < 32 || character > 126 ) character = ' ';
string[ index ] = character;
}
string[ length ] = 0;
}
/*
Returns the total song duration in samples at the current sampling rate.
*/
long micromod_calculate_song_duration( void ) {
long duration, song_end;
duration = 0;
if( num_channels > 0 ) {
micromod_set_position( 0 );
song_end = 0;
while( !song_end ) {
duration += tick_len;
song_end = sequence_tick();
}
micromod_set_position( 0 );
}
return duration;
}
/*
Jump directly to a specific pattern in the sequence.
*/
void micromod_set_position( long pos ) {
long chan_idx;
struct channel *chan;
if( num_channels <= 0 ) return;
if( pos >= song_length ) pos = 0;
break_pattern = pos;
next_row = 0;
tick = 1;
speed = 6;
set_tempo( 125 );
pl_count = pl_channel = -1;
random_seed = 0xABCDEF;
for( chan_idx = 0; chan_idx < num_channels; chan_idx++ ) {
chan = &channels[ chan_idx ];
chan->id = chan_idx;
chan->instrument = chan->assigned = 0;
chan->volume = 0;
switch( chan_idx & 0x3 ) {
case 0: case 3: chan->panning = 0; break;
case 1: case 2: chan->panning = 127; break;
}
}
sequence_tick();
tick_offset = 0;
}
/*
Mute the specified channel.
If channel is negative, un-mute all channels.
Returns the number of channels.
*/
long micromod_mute_channel( long channel ) {
long chan_idx;
if( channel < 0 ) {
for( chan_idx = 0; chan_idx < num_channels; chan_idx++ ) {
channels[ chan_idx ].mute = 0;
}
} else if( channel < num_channels ) {
channels[ channel ].mute = 1;
}
return num_channels;
}
/*
Set the playback gain.
For 4-channel modules, a value of 64 can be used without distortion.
For 8-channel modules, a value of 32 or less is recommended.
*/
void micromod_set_gain( long value ) {
gain = value;
}
/*
Calculate the specified number of samples of audio.
If output pointer is zero, the replay will quickly skip count samples.
The output buffer should be cleared with zeroes.
*/
void micromod_get_audio( short *output_buffer, long count ) {
long offset, remain, chan_idx;
if( num_channels <= 0 ) return;
offset = 0;
while( count > 0 ) {
remain = tick_len - tick_offset;
if( remain > count ) remain = count;
for( chan_idx = 0; chan_idx < num_channels; chan_idx++ ) {
resample( &channels[ chan_idx ], output_buffer, offset, remain );
}
tick_offset += remain;
if( tick_offset == tick_len ) {
sequence_tick();
tick_offset = 0;
}
offset += remain;
count -= remain;
}
}