-
Notifications
You must be signed in to change notification settings - Fork 3
/
window.c
169 lines (127 loc) · 3.72 KB
/
window.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
** Copyright (C) 2007-2015 Erik de Castro Lopo <[email protected]>
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 2 or version 3 of the
** License.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include "window.h"
#define ARRAY_LEN(x) ((int) (sizeof (x) / sizeof (x [0])))
static double besseli0 (double x) ;
static double factorial (int k) ;
void
calc_kaiser_window (double * data, int datalen, double beta)
{
/*
** besseli0 (beta * sqrt (1- (2*x/N).^2))
** w (x) = --------------------------------------, -N/2 <= x <= N/2
** besseli0 (beta)
*/
double two_n_on_N, denom ;
int k ;
denom = besseli0 (beta) ;
if (! isfinite (denom))
{ printf ("besseli0 (%f) : %f\nExiting\n", beta, denom) ;
exit (1) ;
} ;
for (k = 0 ; k < datalen ; k++)
{ double n = k + 0.5 - 0.5 * datalen ;
two_n_on_N = (2.0 * n) / datalen ;
data [k] = besseli0 (beta * sqrt (1.0 - two_n_on_N * two_n_on_N)) / denom ;
} ;
return ;
} /* calc_kaiser_window */
void
calc_nuttall_window (double * data, int datalen)
{
const double a [4] = { 0.355768, 0.487396, 0.144232, 0.012604 } ;
int k ;
/*
** Nuttall window function from :
**
** http://en.wikipedia.org/wiki/Window_function
*/
for (k = 0 ; k < datalen ; k++)
{ double scale ;
scale = M_PI * k / (datalen - 1) ;
data [k] = a [0] - a [1] * cos (2.0 * scale) + a [2] * cos (4.0 * scale) - a [3] * cos (6.0 * scale) ;
} ;
return ;
} /* calc_nuttall_window */
void
calc_hann_window (double * data, int datalen)
{
int k ;
/*
** Hann window function from :
**
** http://en.wikipedia.org/wiki/Window_function
*/
for (k = 0 ; k < datalen ; k++)
data [k] = 0.5 * (1.0 - cos (2.0 * M_PI * k / (datalen - 1))) ;
return ;
} /* calc_hann_window */
/*==============================================================================
*/
static double
besseli0 (double x)
{ int k ;
double result = 0.0 ;
for (k = 1 ; k < 25 ; k++)
{ double temp ;
temp = pow (0.5 * x, k) / factorial (k) ;
result += temp * temp ;
} ;
return 1.0 + result ;
} /* besseli0 */
static double
factorial (int val)
{ static double memory [64] = { 1.0 } ;
static int have_entry = 0 ;
int k ;
if (val < 0)
{ printf ("Oops : val < 0.\n") ;
exit (1) ;
} ;
if (val > ARRAY_LEN (memory))
{ printf ("Oops : val > ARRAY_LEN (memory).\n") ;
exit (1) ;
} ;
if (val < have_entry)
return memory [val] ;
for (k = have_entry + 1 ; k <= val ; k++)
memory [k] = k * memory [k - 1] ;
have_entry = val ;
return memory [val] ;
} /* factorial */
/*==============================================================================
*/
static void init_test (void) __attribute__ ((constructor)) ;
static void
init_test (void)
{
/* puts (__func__) ;*/
assert (factorial (0) == 1.0) ;
assert (factorial (2) == 2.0) ;
assert (factorial (0) == 1.0) ;
assert (factorial (5) == 120.0) ;
assert (factorial (8) == 40320.0) ;
assert (fabs (besseli0 (0.0) - 1.0) < 1e-8) ;
assert (fabs (besseli0 (0.5) - 1.06348337074132) < 1e-8) ;
assert (fabs (besseli0 (1.0) - 1.26606587775201) < 1e-14) ;
assert (fabs (besseli0 (2.0) - 2.27958530233607) < 1e-14) ;
assert (fabs (besseli0 (3.5) - 7.37820343222548) < 1e-14) ;
} /* init_test */