-
Notifications
You must be signed in to change notification settings - Fork 220
/
baidu_svo_extract.py
219 lines (192 loc) · 15.4 KB
/
baidu_svo_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
# coding: utf-8
# File: sentence_parser.py
# Author: lhy<[email protected],https://huangyong.github.io>
# Date: 18-3-10
import os, re
from ddparser import DDParser
class SVOParser:
def __init__(self):
self.parser = DDParser(use_pos=True)
print('loaded model')
'''文章分句处理, 切分长句,冒号,分号,感叹号等做切分标识'''
def split_sents(self, content):
return [sentence for sentence in re.split(r'[??!!。;;::\n\r]', content) if sentence]
'''句法分析---为句子中的每个词语维护一个保存句法依存儿子节点的字典'''
def build_parse_child_dict(self, words, postags, rel_id, relation):
child_dict_list = []
format_parse_list = []
for index in range(len(words)):
child_dict = dict()
for arc_index in range(len(rel_id)):
if rel_id[arc_index] == index+1: #arcs的索引从1开始
if rel_id[arc_index] in child_dict:
child_dict[relation[arc_index]].append(arc_index)
else:
child_dict[relation[arc_index]] = []
child_dict[relation[arc_index]].append(arc_index)
child_dict_list.append(child_dict)
heads = ['Root' if id == 0 else words[id - 1] for id in rel_id] # 匹配依存父节点词语
for i in range(len(words)):
# ['ATT', '李克强', 0, 'nh', '总理', 1, 'n']
a = [relation[i], words[i], i, postags[i], heads[i], rel_id[i]-1, postags[rel_id[i]-1]]
format_parse_list.append(a)
return child_dict_list, format_parse_list
'''parser主函数'''
def parser_main(self, sentence):
res = self.parser.parse(sentence, )[0]
words = res["word"]
postags = res["postag"]
rel_id = res["head"]
relation = res["deprel"]
child_dict_list, format_parse_list = self.build_parse_child_dict(words, postags, rel_id, relation)
return words, postags, child_dict_list, format_parse_list
"""将所有的ATT进行合并"""
def merge_ATT(self, words, postags, format_parse_list):
words_ = words
retain_nodes = set()
ATTs = []
ATT = []
format_parse_list_ = []
for parse in format_parse_list:
dep = parse[0]
if dep in ['ATT', 'ADV']:
ATT += [parse[2], parse[5]]
else:
if ATT:
body = ''.join([words[i] for i in sorted(set(ATT))])
ATTs.append(body)
retain_nodes.add(sorted(set(ATT))[-1])
words_[sorted(set(ATT))[-1]] = body
else:
retain_nodes.add(parse[2])
ATT = []
for indx, parse in enumerate(format_parse_list):
if indx in retain_nodes:
parse_ = [parse[0], words_[indx], indx, postags[indx], words_[parse[5]], parse[5], postags[parse[5]]]
format_parse_list_.append(parse_)
return words_, postags, format_parse_list_, retain_nodes
"""基于该结果,提取三元组"""
def extract(self, words, postags, child_dict_list, arcs, retain_nodes):
svos = []
for index in range(len(postags)):
if index not in retain_nodes:
continue
tmp = 1
# 如果语义角色标记为空,则使用依存句法进行抽取
if postags[index]:
# 抽取以谓词为中心的事实三元组
child_dict = child_dict_list[index]
# 主谓宾
if 'SBV' in child_dict and 'VOB' in child_dict:
# e1s = self.expand_e(words, postags, child_dict_list, child_dict['SBV'][0])
# e2s = self.expand_e(words, postags, child_dict_list, child_dict['VOB'][0])
r = words[index]
e1 = words[child_dict['SBV'][0]]
e2 = words[child_dict['VOB'][0]]
if e1.replace(' ', '') and e2.replace(' ', ''):
svos.append([e1, r, e2])
# 含有介宾关系的主谓动补关系
if 'SBV' in child_dict and 'CMP' in child_dict:
e1 = words[child_dict['SBV'][0]]
cmp_index = child_dict['CMP'][0]
r = words[index] + words[cmp_index]
if 'POB' in child_dict_list[cmp_index]:
e2 = words[child_dict_list[cmp_index]['POB'][0]]
if e1.replace(' ', '') and e2.replace(' ', ''):
svos.append([e1, r, e2])
return svos
'''三元组抽取主函数'''
def ruler2(self, words, postags, child_dict_list, arcs):
svos = []
for index in range(len(postags)):
tmp = 1
# 先借助语义角色标注的结果,进行三元组抽取
if tmp == 1:
# 如果语义角色标记为空,则使用依存句法进行抽取
# if postags[index] == 'v':
if postags[index]:
# 抽取以谓词为中心的事实三元组
child_dict = child_dict_list[index]
# 主谓宾
if 'SBV' in child_dict and 'VOB' in child_dict:
r = words[index]
e1 = self.complete_e(words, postags, child_dict_list, child_dict['SBV'][0])
e2 = self.complete_e(words, postags, child_dict_list, child_dict['VOB'][0])
if e1.replace(' ', '') and e2.replace(' ', ''):
svos.append([e1, r, e2])
# 定语后置,动宾关系
relation = arcs[index][0]
head = arcs[index][2]
if relation == 'ATT':
if 'VOB' in child_dict:
e1 = self.complete_e(words, postags, child_dict_list, head - 1)
r = words[index]
e2 = self.complete_e(words, postags, child_dict_list, child_dict['VOB'][0])
temp_string = r + e2
if temp_string == e1[:len(temp_string)]:
e1 = e1[len(temp_string):]
if temp_string not in e1:
if e1.replace(' ', '') and e2.replace(' ', ''):
svos.append([e1, r, e2])
# 含有介宾关系的主谓动补关系
if 'SBV' in child_dict and 'CMP' in child_dict:
e1 = self.complete_e(words, postags, child_dict_list, child_dict['SBV'][0])
cmp_index = child_dict['CMP'][0]
r = words[index] + words[cmp_index]
if 'POB' in child_dict_list[cmp_index]:
e2 = self.complete_e(words, postags, child_dict_list, child_dict_list[cmp_index]['POB'][0])
if e1.replace(' ', '') and e2.replace(' ', ''):
svos.append([e1, r, e2])
return svos
'''对找出的主语或者宾语进行扩展'''
def complete_e(self, words, postags, child_dict_list, word_index):
child_dict = child_dict_list[word_index]
prefix = ''
if 'ATT' in child_dict:
for i in range(len(child_dict['ATT'])):
prefix += self.complete_e(words, postags, child_dict_list, child_dict['ATT'][i])
postfix = ''
if postags[word_index] == 'v':
if 'VOB' in child_dict:
postfix += self.complete_e(words, postags, child_dict_list, child_dict['VOB'][0])
if 'SBV' in child_dict:
prefix = self.complete_e(words, postags, child_dict_list, child_dict['SBV'][0]) + prefix
return prefix + words[word_index] + postfix
'''程序主控函数'''
def triples_main(self, content):
sentences = self.split_sents(content)
svos = []
for sentence in sentences:
print(sentence)
words, postags, child_dict_list, arcs = self.parser_main(sentence)
svo = self.ruler2(words, postags, child_dict_list, arcs)
svos += svo
return svos
'''测试'''
def test():
content1 = """环境很好,位置独立性很强,比较安静很切合店名,半闲居,偷得半日闲。点了比较经典的菜品,味道果然不错!烤乳鸽,超级赞赞赞,脆皮焦香,肉质细嫩,超好吃。艇仔粥料很足,香葱自己添加,很贴心。金钱肚味道不错,不过没有在广州吃的烂,牙口不好的慎点。凤爪很火候很好,推荐。最惊艳的是长寿菜,菜料十足,很新鲜,清淡又不乏味道,而且没有添加调料的味道,搭配的非常不错!"""
content2 = """近日,一条男子高铁吃泡面被女乘客怒怼的视频引发热议。女子情绪激动,言辞激烈,大声斥责该乘客,称高铁上有规定不能吃泡面,质问其“有公德心吗”“没素质”。视频曝光后,该女子回应称,因自己的孩子对泡面过敏,曾跟这名男子沟通过,但对方执意不听,她才发泄不满,并称男子拍视频上传已侵犯了她的隐私权和名誉权,将采取法律手段。12306客服人员表示,高铁、动车上一般不卖泡面,但没有规定高铁、动车上不能吃泡面。
高铁属于密封性较强的空间,每名乘客都有维护高铁内秩序,不破坏该空间内空气质量的义务。这也是乘客作为公民应当具备的基本品质。但是,在高铁没有明确禁止食用泡面等食物的背景下,以影响自己或孩子为由阻挠他人食用某种食品并厉声斥责,恐怕也超出了权利边界。当人们在公共场所活动时,不宜过分干涉他人权利,这样才能构建和谐美好的公共秩序。
一般来说,个人的权利便是他人的义务,任何人不得随意侵犯他人权利,这是每个公民得以正常工作、生活的基本条件。如果权利可以被肆意侵犯而得不到救济,社会将无法运转,人们也没有幸福可言。如西谚所说,“你的权利止于我的鼻尖”,“你可以唱歌,但不能在午夜破坏我的美梦”。无论何种权利,其能够得以行使的前提是不影响他人正常生活,不违反公共利益和公序良俗。超越了这个边界,权利便不再为权利,也就不再受到保护。
在“男子高铁吃泡面被怒怼”事件中,初一看,吃泡面男子可能侵犯公共场所秩序,被怒怼乃咎由自取,其实不尽然。虽然高铁属于封闭空间,但与禁止食用刺激性食品的地铁不同,高铁运营方虽然不建议食用泡面等刺激性食品,但并未作出禁止性规定。由此可见,即使食用泡面、榴莲、麻辣烫等食物可能产生刺激性味道,让他人不适,但是否食用该食品,依然取决于个人喜好,他人无权随意干涉乃至横加斥责。这也是此事件披露后,很多网友并未一边倒地批评食用泡面的男子,反而认为女乘客不该高声喧哗。
现代社会,公民的义务一般分为法律义务和道德义务。如果某个行为被确定为法律义务,行为人必须遵守,一旦违反,无论是受害人抑或旁观群众,均有权制止、投诉、举报。违法者既会受到应有惩戒,也会受到道德谴责,积极制止者则属于应受鼓励的见义勇为。如果有人违反道德义务,则应受到道德和舆论谴责,并有可能被追究法律责任。如在公共场所随地吐痰、乱扔垃圾、脱掉鞋子、随意插队等。此时,如果行为人对他人的劝阻置之不理甚至行凶报复,无疑要受到严厉惩戒。
当然,随着社会的发展,某些道德义务可能上升为法律义务。如之前,很多人对公共场所吸烟不以为然,烟民可以旁若无人地吞云吐雾。现在,要是还有人不识时务地在公共场所吸烟,必然将成为众矢之的。
再回到“高铁吃泡面”事件,要是随着人们观念的更新,在高铁上不得吃泡面等可能产生刺激性气味的食物逐渐成为共识,或者上升到道德义务或法律义务。斥责、制止他人吃泡面将理直气壮,否则很难摆脱“矫情”,“将自我权利凌驾于他人权利之上”的嫌疑。
在相关部门并未禁止在高铁上吃泡面的背景下,吃不吃泡面系个人权利或者个人私德,是不违反公共利益的个人正常生活的一部分。如果认为他人吃泡面让自己不适,最好是请求他人配合并加以感谢,而非站在道德制高点强制干预。只有每个人行使权利时不逾越边界,与他人沟通时好好说话,不过分自我地将幸福和舒适凌驾于他人之上,人与人之间才更趋于平等,公共生活才更趋向美好有序。"""
content3 = '''(原标题:央视独家采访:陕西榆林产妇坠楼事件在场人员还原事情经过)
央视新闻客户端11月24日消息,2017年8月31日晚,在陕西省榆林市第一医院绥德院区,产妇马茸茸在待产时,从医院五楼坠亡。事发后,医院方面表示,由于家属多次拒绝剖宫产,最终导致产妇难忍疼痛跳楼。但是产妇家属却声称,曾向医生多次提出剖宫产被拒绝。
事情经过究竟如何,曾引起舆论纷纷,而随着时间的推移,更多的反思也留给了我们,只有解决了这起事件中暴露出的一些问题,比如患者的医疗选择权,人们对剖宫产和顺产的认识问题等,这样的悲剧才不会再次发生。央视记者找到了等待产妇的家属,主治医生,病区主任,以及当时的两位助产师,一位实习医生,希望通过他们的讲述,更准确地还原事情经过。
产妇待产时坠亡,事件有何疑点。公安机关经过调查,排除他杀可能,初步认定马茸茸为跳楼自杀身亡。马茸茸为何会在医院待产期间跳楼身亡,这让所有人的目光都聚焦到了榆林第一医院,这家在当地人心目中数一数二的大医院。
就这起事件来说,如何保障患者和家属的知情权,如何让患者和医生能够多一份实质化的沟通?这就需要与之相关的法律法规更加的细化、人性化并且充满温度。用这种温度来消除孕妇对未知的恐惧,来保障医患双方的权益,迎接新生儿平安健康地来到这个世界。'''
content4 = '李克强总理今天来我家了,我感到非常荣幸'
content5 = ''' 以色列国防军20日对加沙地带实施轰炸,造成3名巴勒斯坦武装人员死亡。此外,巴勒斯坦人与以色列士兵当天在加沙地带与以交界地区发生冲突,一名巴勒斯坦人被打死。当天的冲突还造成210名巴勒斯坦人受伤。
当天,数千名巴勒斯坦人在加沙地带边境地区继续“回归大游行”抗议活动。部分示威者燃烧轮胎,并向以军投掷石块、燃烧瓶等,驻守边境的以军士兵向示威人群发射催泪瓦斯并开枪射击。'''
extractor = SVOParser()
svos = extractor.triples_main(content2)
print('svos', svos)
for svo in svos:
print(svo)
if __name__ == '__main__':
print("loading model...")
test()