-
Notifications
You must be signed in to change notification settings - Fork 25
/
svm.py
executable file
·113 lines (78 loc) · 3.17 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
SVM evaluation.
Usage:
svm.py [--whole] [--male] [--threshold] [--leave-site-out] [<derivative> ...]
svm.py (-h | --help)
Options:
-h --help Show this screen
--whole Run model for the whole dataset
--male Run model for male subjects
--threshold Run model for thresholded subjects
--leave-site-out Prepare data using leave-site-out method
derivative Derivatives to process
"""
import random
import numpy as np
import tabulate
from docopt import docopt
from utils import (load_phenotypes, format_config, hdf5_handler, load_fold, reset)
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
def run(X_train, y_train, X_test, y_test):
clf = SVC()
clf.fit(X_train, y_train)
pred_y = clf.predict(X_test)
[[TN, FP], [FN, TP]] = confusion_matrix(y_test, pred_y).astype(float)
accuracy = (TP + TN) / (TP + TN + FP + FN)
specificity = TN / (FP + TN)
precision = TP / (TP + FP)
sensivity = recall = TP / (TP + FN)
fscore = 2 * TP / (2 * TP + FP + FN)
return [accuracy, precision, recall, fscore, sensivity, specificity]
def run_svm(hdf5, experiment):
exp_storage = hdf5["experiments"][experiment]
folds = []
for fold in exp_storage:
X_train, y_train, \
X_valid, y_valid, \
X_test, y_test = load_fold(hdf5["patients"], exp_storage, fold)
X_train = np.concatenate([X_train, X_valid])
y_train = np.concatenate([y_train, y_valid])
folds.append(run(X_train, y_train, X_test, y_test))
return np.mean(folds, axis=0).tolist()
if __name__ == "__main__":
reset()
arguments = docopt(__doc__)
pheno_path = "./data/phenotypes/Phenotypic_V1_0b_preprocessed1.csv"
pheno = load_phenotypes(pheno_path)
hdf5 = hdf5_handler("./data/abide.hdf5", "a")
valid_derivatives = ["cc200", "aal", "ez", "ho", "tt", "dosenbach160"]
derivatives = [derivative for derivative
in arguments["<derivative>"]
if derivative in valid_derivatives]
experiments = []
for derivative in derivatives:
config = {"derivative": derivative}
if arguments["--whole"]:
experiments += [format_config("{derivative}_whole", config)],
if arguments["--male"]:
experiments += [format_config("{derivative}_male", config)]
if arguments["--threshold"]:
experiments += [format_config("{derivative}_threshold", config)]
if arguments["--leave-site-out"]:
for site in pheno["SITE_ID"].unique():
site_config = {"site": site}
experiments += [
format_config("{derivative}_leavesiteout-{site}",
config, site_config)
]
experiments = sorted(experiments)
experiment_results = []
for experiment in experiments:
results = run_svm(hdf5, experiment)
experiment_results += [[experiment] + results]
print tabulate.tabulate(experiment_results,
headers=["exp", "acc", "prec", "recall",
"fscore", "sens", "spec"])