-
Notifications
You must be signed in to change notification settings - Fork 15
/
day24.rs
135 lines (116 loc) · 4.01 KB
/
day24.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
//! # Lobby Layout
//!
//! Hex grid parsing and navigation uses
//! [Axial Coordinates](https://www.redblobgames.com/grids/hexagons/#coordinates-cube)
//! exactly as described in the excellent [Red Blob Games](https://www.redblobgames.com/) blog.
//!
//! Part two uses exactly the same approach as [`day 17`] and most of the code is identical.
//!
//! As the black tiles are very sparse (about 8% for my input) it's faster to switch from
//! a "pull" model where we check the surroundings neighbors of each tile, to a "push" model
//! where we update the neighbors of each black tile instead.
//!
//! [`day 17`]: crate::year2020::day17
use crate::util::hash::*;
use std::array::from_fn;
#[derive(PartialEq, Eq, Hash)]
pub struct Hex {
q: i32,
r: i32,
}
pub fn parse(input: &str) -> FastSet<Hex> {
let mut tiles = FastSet::new();
for line in input.lines() {
let mut iter = line.bytes();
let mut q = 0;
let mut r = 0;
while let Some(b) = iter.next() {
match b {
b'e' => q += 1,
b'w' => q -= 1,
b'n' => {
if b'e' == iter.next().unwrap() {
q += 1;
}
r -= 1;
}
b's' => {
if b'e' != iter.next().unwrap() {
q -= 1;
}
r += 1;
}
_ => unreachable!(),
}
}
let tile = Hex { q, r };
if tiles.contains(&tile) {
tiles.remove(&tile);
} else {
tiles.insert(tile);
}
}
tiles
}
pub fn part1(input: &FastSet<Hex>) -> usize {
input.len()
}
pub fn part2(input: &FastSet<Hex>) -> usize {
// Determine bounds
let mut q1 = i32::MAX;
let mut q2 = i32::MIN;
let mut r1 = i32::MAX;
let mut r2 = i32::MIN;
for hex in input {
q1 = q1.min(hex.q);
q2 = q2.max(hex.q);
r1 = r1.min(hex.r);
r2 = r2.max(hex.r);
}
// Create array with enough space to allow expansion for 100 generations.
// 2 * (100 generations + 1 buffer) + Origin = 203 extra in each dimension
let width = q2 - q1 + 203;
let height = r2 - r1 + 203;
let neighbors: [i32; 6] = [-1, 1, -width, width, 1 - width, width - 1];
let neighbors: [usize; 6] = from_fn(|i| neighbors[i] as usize);
let mut active = Vec::with_capacity(5_000);
let mut candidates = Vec::with_capacity(5_000);
let mut next_active = Vec::with_capacity(5_000);
// Create initial active state, offsetting tiles so that all indices are positive.
for hex in input {
let index = width * (hex.r - r1 + 101) + (hex.q - q1 + 101);
active.push(index as usize);
}
for _ in 0..100 {
let mut state: Vec<u8> = vec![0; (width * height) as usize];
for &tile in &active {
for &offset in &neighbors {
// Earlier we converted the offsets from signed `i32` to unsigned `usize`. To
// achieve subtraction for negative indices, we use a `wrapping_add` that performs
// [two's complement](https://en.wikipedia.org/wiki/Two%27s_complement) arithmetic.
let index = tile.wrapping_add(offset);
state[index] += 1;
if state[index] == 2 {
candidates.push(index);
}
}
}
// Active tiles remain active with both one and two neighbors.
for &tile in &active {
if state[tile] == 1 {
next_active.push(tile);
}
}
// Check that the neighbor count for inactive tiles hasn't exceeded two.
for &tile in &candidates {
if state[tile] == 2 {
next_active.push(tile);
}
}
// Swap to make next generation the current generation.
(active, next_active) = (next_active, active);
candidates.clear();
next_active.clear();
}
active.len()
}