Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DeepFace #31

Open
Eiros31 opened this issue Feb 9, 2024 · 1 comment
Open

DeepFace #31

Eiros31 opened this issue Feb 9, 2024 · 1 comment

Comments

@Eiros31
Copy link

Eiros31 commented Feb 9, 2024

No description provided.

@Eiros31 Eiros31 closed this as not planned Won't fix, can't repro, duplicate, stale Feb 9, 2024
@Eiros31 Eiros31 reopened this Feb 9, 2024
@Eiros31
Copy link
Author

Eiros31 commented Feb 9, 2024

"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets.

It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses.
"""
import random
import numpy as np
import torch.utils.data as data
from PIL import Image
import torchvision.transforms as transforms
from abc import ABC, abstractmethod

class BaseDataset(data.Dataset, ABC):
"""This class is an abstract base class (ABC) for datasets.

To create a subclass, you need to implement the following four functions:
-- <__init__>:                      initialize the class, first call BaseDataset.__init__(self, opt).
-- <__len__>:                       return the size of dataset.
-- <__getitem__>:                   get a data point.
-- <modify_commandline_options>:    (optionally) add dataset-specific options and set default options.
"""

def __init__(self, opt):
    """Initialize the class; save the options in the class

    Parameters:
        opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
    """
    self.opt = opt
    # self.root = opt.dataroot
    self.current_epoch = 0

@staticmethod
def modify_commandline_options(parser, is_train):
    """Add new dataset-specific options, and rewrite default values for existing options.

    Parameters:
        parser          -- original option parser
        is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.

    Returns:
        the modified parser.
    """
    return parser

@abstractmethod
def __len__(self):
    """Return the total number of images in the dataset."""
    return 0

@abstractmethod
def __getitem__(self, index):
    """Return a data point and its metadata information.

    Parameters:
        index - - a random integer for data indexing

    Returns:
        a dictionary of data with their names. It ususally contains the data itself and its metadata information.
    """
    pass

def get_transform(grayscale=False):
transform_list = []
if grayscale:
transform_list.append(transforms.Grayscale(1))
transform_list += [transforms.ToTensor()]
return transforms.Compose(transform_list)

def get_affine_mat(opt, size):
shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False
w, h = size

if 'shift' in opt.preprocess:
    shift_pixs = int(opt.shift_pixs)
    shift_x = random.randint(-shift_pixs, shift_pixs)
    shift_y = random.randint(-shift_pixs, shift_pixs)
if 'scale' in opt.preprocess:
    scale = 1 + opt.scale_delta * (2 * random.random() - 1)
if 'rot' in opt.preprocess:
    rot_angle = opt.rot_angle * (2 * random.random() - 1)
    rot_rad = -rot_angle * np.pi/180
if 'flip' in opt.preprocess:
    flip = random.random() > 0.5

shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3])
flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3])
shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3])
rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3])
scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3])
shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3])

affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin    
affine_inv = np.linalg.inv(affine)
return affine, affine_inv, flip

def apply_img_affine(img, affine_inv, method=Image.BICUBIC):
return img.pil2tensor_transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC)

def apply_lm_affine(landmark, affine, flip, size):
, h = size
lm = landmark.copy()
lm[:, 1] = h - 1 - lm[:, 1]
lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1)
lm = lm @ np.transpose(affine)
lm[:, :2] = lm[:, :2] / lm[:, 2:]
lm = lm[:, :2]
lm[:, 1] = h - 1 - lm[:, 1]
if flip:
lm
= lm.copy()
lm_[:17] = lm[16::-1]
lm_[17:22] = lm[26:21:-1]
lm_[22:27] = lm[21:16:-1]
lm_[31:36] = lm[35:30:-1]
lm_[36:40] = lm[45:41:-1]
lm_[40:42] = lm[47:45:-1]
lm_[42:46] = lm[39:35:-1]
lm_[46:48] = lm[41:39:-1]
lm_[48:55] = lm[54:47:-1]
lm_[55:60] = lm[59:54:-1]
lm_[60:65] = lm[64:59:-1]
lm_[65:68] = lm[67:64:-1]
lm = lm_
return lm

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant