-
Notifications
You must be signed in to change notification settings - Fork 33
/
kp_evaluate.py
553 lines (471 loc) · 28 KB
/
kp_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import argparse
import json
import os
import re
import time
import tqdm
import numpy as np
import pandas as pd
from onmt.inputters.keyphrase_dataset import infer_dataset_type, KP_DATASET_FIELDS, parse_src_fn
from onmt.keyphrase.eval import compute_match_scores, run_classic_metrics, run_advanced_metrics
from onmt.keyphrase.utils import if_present_duplicate_phrases, validate_phrases, print_predeval_result, gather_scores
from onmt.utils.logging import init_logger
import spacy
spacy_nlp = spacy.load('en_core_web_sm')
def evaluate(src_list, tgt_list, pred_list,
unk_token,
logger=None, verbose=False,
report_path=None, tokenizer=None):
if report_path:
report_file = open(report_path, 'w+')
else:
report_file = None
# 'k' means the number of phrases in ground-truth, add 1,3 for openkp
topk_range = [5, 10, 'k', 'M', 1, 3]
absent_topk_range = [10, 50, 'k', 'M']
# 'precision_hard' and 'f_score_hard' mean that precision is calculated with denominator strictly as K (say 5 or 10), won't be lessened even number of preds is smaller
metric_names = ['correct', 'precision', 'recall', 'f_score', 'precision_hard', 'f_score_hard']
individual_score_dicts = [] # {'precision@5':[],'recall@5':[],'f1score@5':[], 'precision@10':[],'recall@10':[],'f1score@10':[]}
gathered_score_dict = {} # {'precision@5':[],'recall@5':[],'f1score@5':[], 'precision@10':[],'recall@10':[],'f1score@10':[]}
# for i, (src_dict, tgt_dict, pred_dict) in tqdm.tqdm(enumerate(zip(src_list, tgt_list, pred_list))):
for i, (src_dict, tgt_dict, pred_dict) in tqdm.tqdm(enumerate(zip(src_list, tgt_list, pred_list))):
"""
1. Process each data example and predictions
"""
pred_seqs = pred_dict["pred_sents"]
if len(pred_seqs) > 0 and isinstance(pred_seqs[0], str):
pred_seqs = [p.split() for p in pred_seqs]
pred_idxs = pred_dict["preds"] if "preds" in pred_dict else None
pred_scores = pred_dict["pred_scores"] if "pred_scores" in pred_dict else None
copied_flags = pred_dict["copied_flags"] if "copied_flags" in pred_dict else None
# @memray 20200410 add split_nopunc tokenization, spacy runs very slow
if tokenizer == 'spacy':
src_seq = [t.text for t in spacy_nlp(src_dict["src"], disable=["textcat"])]
tgt_seqs = [[t.text for t in spacy_nlp(p, disable=["textcat"])] for p in tgt_dict["tgt"]]
if len(pred_seqs) > 0 and isinstance(pred_seqs[0], str):
pred_seqs = [[t.text for t in spacy_nlp(p, disable=["textcat"])] for p in pred_seqs]
else:
pred_seqs = [[t.text for t in spacy_nlp(' '.join(p), disable=["textcat"])] for p in pred_seqs]
unk_token = 'unk'
elif tokenizer == 'split':
src_seq = src_dict["src"].split()
tgt_seqs = [t.split() for t in tgt_dict["tgt"]]
pred_seqs = pred_seqs
elif tokenizer == 'split_nopunc':
src_seq = [t for t in re.split(r'\W', src_dict["src"]) if len(t) > 0]
tgt_seqs = [[t for t in re.split(r'\W', p) if len(t) > 0] for p in tgt_dict["tgt"]]
pred_seqs = [[t for t in re.split(r'\W', ' '.join(p)) if len(t) > 0] for p in pred_seqs]
unk_token = 'unk'
else:
raise Exception('Unset or unsupported tokenizer for evaluation: %s' % str(tokenizer))
# 1st filtering, ignore phrases having <unk> and puncs
valid_pred_flags = validate_phrases(pred_seqs, unk_token)
# 2nd filtering: filter out phrases that don't appear in text, and keep unique ones after stemming
present_pred_flags, _, duplicate_flags = if_present_duplicate_phrases(src_seq, pred_seqs, stemming=True, lowercase=True)
# treat duplicates as invalid
valid_pred_flags = valid_pred_flags * ~duplicate_flags if len(valid_pred_flags) > 0 else []
valid_and_present_flags = valid_pred_flags * present_pred_flags if len(valid_pred_flags) > 0 else []
valid_and_absent_flags = valid_pred_flags * ~present_pred_flags if len(valid_pred_flags) > 0 else []
# compute match scores (exact, partial and mixed), for exact it's a list otherwise matrix
match_scores_exact = compute_match_scores(tgt_seqs=tgt_seqs, pred_seqs=pred_seqs, do_lower=True, do_stem=True, type='exact')
match_scores_partial = compute_match_scores(tgt_seqs=tgt_seqs, pred_seqs=pred_seqs, do_lower=True, do_stem=True, type='ngram')
# simply add full-text to n-grams might not be good as its contribution is not clear
# match_scores_mixed = compute_match_scores(tgt_seqs=tgt_seqs, pred_seqs=pred_seqs, type='mixed')
# split tgts by present/absent
present_tgt_flags, _, _ = if_present_duplicate_phrases(src_seq, tgt_seqs, stemming=True, lowercase=True)
present_tgts = [tgt for tgt, present in zip(tgt_seqs, present_tgt_flags) if present]
absent_tgts = [tgt for tgt, present in zip(tgt_seqs, present_tgt_flags) if ~present]
# filter out results of invalid preds
valid_preds = [seq for seq, valid in zip(pred_seqs, valid_pred_flags) if valid]
valid_present_pred_flags = present_pred_flags[valid_pred_flags]
valid_match_scores_exact = match_scores_exact[valid_pred_flags]
valid_match_scores_partial = match_scores_partial[valid_pred_flags]
# match_scores_mixed = match_scores_mixed[valid_pred_flags]
# split preds by present/absent and exact/partial/mixed
valid_present_preds = [pred for pred, present in zip(valid_preds, valid_present_pred_flags) if present]
valid_absent_preds = [pred for pred, present in zip(valid_preds, valid_present_pred_flags) if ~present]
if len(valid_present_pred_flags) > 0:
present_exact_match_scores = valid_match_scores_exact[valid_present_pred_flags]
present_partial_match_scores = valid_match_scores_partial[valid_present_pred_flags][:, present_tgt_flags]
# present_mixed_match_scores = match_scores_mixed[present_pred_flags][:, present_tgt_flags]
absent_exact_match_scores = valid_match_scores_exact[~valid_present_pred_flags]
absent_partial_match_scores = valid_match_scores_partial[~valid_present_pred_flags][:, ~present_tgt_flags]
# absent_mixed_match_scores = match_scores_mixed[~present_pred_flags][:, ~present_tgt_flags]
else:
present_exact_match_scores = []
present_partial_match_scores = []
# present_mixed_match_scores = []
absent_exact_match_scores = []
absent_partial_match_scores = []
# absent_mixed_match_scores = []
# assert len(valid_pred_seqs) == len(match_scores_exact) == len(present_pred_flags)
# assert len(present_preds) == len(present_exact_match_scores) == len(present_partial_match_scores) == len(present_mixed_match_scores)
# assert present_partial_match_scores.shape == present_mixed_match_scores.shape
# assert len(absent_preds) == len(absent_exact_match_scores) == len(absent_partial_match_scores) == len(absent_mixed_match_scores)
# assert absent_partial_match_scores.shape == absent_mixed_match_scores.shape
"""
2. Compute metrics
"""
# get the scores on different scores (for absent results, only recall matters)
all_exact_results = run_classic_metrics(valid_match_scores_exact, valid_preds, tgt_seqs, metric_names, topk_range)
present_exact_results = run_classic_metrics(present_exact_match_scores, valid_present_preds, present_tgts, metric_names, topk_range)
absent_exact_results = run_classic_metrics(absent_exact_match_scores, valid_absent_preds, absent_tgts, metric_names, absent_topk_range)
all_partial_results = run_classic_metrics(valid_match_scores_partial, valid_preds, tgt_seqs, metric_names, topk_range, type='partial')
present_partial_results = run_classic_metrics(present_partial_match_scores, valid_present_preds, present_tgts, metric_names, topk_range, type='partial')
absent_partial_results = run_classic_metrics(absent_partial_match_scores, valid_absent_preds, absent_tgts, metric_names, absent_topk_range, type='partial')
# present_mixed_results = run_metrics(present_mixed_match_scores, present_preds, present_tgts, metric_names, topk_range, type='partial')
# absent_mixed_results = run_metrics(absent_mixed_match_scores, absent_preds, absent_tgts, metric_names, absent_topk_range, type='partial')
all_exact_advanced_results = run_advanced_metrics(valid_match_scores_exact, valid_preds, tgt_seqs)
present_exact_advanced_results = run_advanced_metrics(present_exact_match_scores, valid_present_preds, present_tgts)
absent_exact_advanced_results = run_advanced_metrics(absent_exact_match_scores, valid_absent_preds, absent_tgts)
# print(advanced_present_exact_results)
# print(advanced_absent_exact_results)
"""
3. Gather scores
"""
eval_results_names = [
'all_exact', 'all_partial',
'present_exact', 'absent_exact',
'present_partial', 'absent_partial',
# 'present_mixed', 'absent_mixed'
'all_exact_advanced', 'present_exact_advanced', 'absent_exact_advanced',
]
eval_results_list = [all_exact_results, all_partial_results,
present_exact_results, absent_exact_results,
present_partial_results, absent_partial_results,
# present_mixed_results, absent_mixed_results
all_exact_advanced_results, present_exact_advanced_results, absent_exact_advanced_results
]
# update score_dict, appending new scores (results_list) to it
individual_score_dict = {result_name: results for result_name, results in zip(eval_results_names, eval_results_list)}
gathered_score_dict = gather_scores(gathered_score_dict, eval_results_names, eval_results_list)
# add tgt/pred count for computing average performance on non-empty items
stats_results_names = ['present_tgt_num', 'absent_tgt_num', 'present_pred_num', 'absent_pred_num', 'unique_pred_num', 'dup_pred_num', 'beam_num', 'beamstep_num']
stats_results_list = [
{'present_tgt_num': len(present_tgts)},
{'absent_tgt_num': len(absent_tgts)},
{'present_pred_num': len(valid_present_preds)},
{'absent_pred_num': len(valid_absent_preds)},
# TODO some stat should be calculated here since exhaustive/self-terminating makes difference
{'unique_pred_num': pred_dict['unique_pred_num'] if 'unique_pred_num' in pred_dict else 0},
{'dup_pred_num': pred_dict['dup_pred_num'] if 'dup_pred_num' in pred_dict else 0},
{'beam_num': pred_dict['beam_num'] if 'beam_num' in pred_dict else 0},
{'beamstep_num': pred_dict['beamstep_num'] if 'beamstep_num' in pred_dict else 0},
]
for result_name, result_dict in zip(stats_results_names, stats_results_list):
individual_score_dict[result_name] = result_dict[result_name]
gathered_score_dict = gather_scores(gathered_score_dict, stats_results_names, stats_results_list)
# individual_score_dicts.append(individual_score_dict)
"""
4. Print results if necessary
"""
if verbose or report_file:
print_out = print_predeval_result(i, ' '.join(src_seq),
tgt_seqs, present_tgt_flags,
pred_seqs, pred_scores, pred_idxs, copied_flags,
present_pred_flags, valid_pred_flags,
valid_and_present_flags, valid_and_absent_flags,
match_scores_exact, match_scores_partial,
eval_results_names, eval_results_list, gathered_score_dict)
if verbose:
if logger:
logger.info(print_out)
else:
print(print_out)
if report_file:
report_file.write(print_out)
# for k, v in score_dict.items():
# print('%s, num=%d, mean=%f' % (k, len(v), np.average(v)))
if report_file:
report_file.close()
return gathered_score_dict
def kp_results_to_str(results_dict):
"""
return ">> ROUGE(1/2/3/L/SU4): {:.2f}/{:.2f}/{:.2f}/{:.2f}/{:.2f}".format(
results_dict["rouge_1_f_score"] * 100,
results_dict["rouge_2_f_score"] * 100,
results_dict["rouge_3_f_score"] * 100,
results_dict["rouge_l_f_score"] * 100,
results_dict["rouge_su*_f_score"] * 100)
"""
summary_dict = {}
for k,v in results_dict.items():
summary_dict[k] = np.average(v)
return json.dumps(summary_dict)
def baseline_pred_loader(pred_path, model_name):
pred_dict_list = []
if model_name in ['tfidf', 'textrank', 'singlerank', 'expandrank', 'maui', 'kea']:
doc_list = [file_name for file_name in os.listdir(pred_path) if file_name.endswith('txt.phrases')]
doc_list = sorted(doc_list, key=lambda k: int(k[:k.index('.txt.phrases')]))
for doc_name in doc_list:
doc_path = os.path.join(pred_path, doc_name)
pred_dict = {}
pred_dict['pred_sents'] = []
for l in open(doc_path, 'r').readlines():
pred_dict['pred_sents'].append(l.lower().split())
pred_dict_list.append(pred_dict)
else:
raise NotImplementedError
return pred_dict_list
def keyphrase_eval(datasplit_name, src_path, tgt_path, pred_path,
unk_token='<unk>', verbose=False, logger=None,
report_path=None, model_name='nn',
tokenizer=None):
# change data loader to iterator, otherwise it consumes more than 64gb RAM
# check line numbers first
dataset_name = '_'.join(datasplit_name.split('_')[: -1])
split_name = datasplit_name.split('_')[-1]
dataset_name = dataset_name.strip().lower()
src_line_number = sum([1 for _ in open(src_path, "r")])
tgt_line_number = sum([1 for _ in open(tgt_path, "r")])
if model_name == 'nn':
pred_line_number = sum([1 for _ in open(pred_path, "r")])
else:
pred_line_number = len(baseline_pred_loader(pred_path, model_name))
logger.info("pred file=%s" % (pred_path))
logger.info("#(src)=%d, #(tgt)=%d, #(pred)=%d" % (src_line_number, tgt_line_number, pred_line_number))
if src_line_number == tgt_line_number == pred_line_number:
src_data = [json.loads(l) for l in open(src_path, "r")]
tgt_data = [json.loads(l) for l in open(tgt_path, "r")]
# Load from the json-format raw data, preprocess the src and tgt
if src_path.endswith('json') or src_path.endswith('jsonl'):
assert src_path == tgt_path, \
'src and tgt should be from the same raw file: \n\tsrc_path: %s \n\ttgt_path: %s' % (src_path, tgt_path)
dataset_type = infer_dataset_type(src_path)
title_field, text_field, keyword_field, _ = KP_DATASET_FIELDS[dataset_type]
for src_ex, tgt_ex in zip(src_data, tgt_data):
src_str = parse_src_fn(src_ex, title_field, text_field)
if isinstance(tgt_ex[keyword_field], str):
tgt_kps = tgt_ex[keyword_field].split(';')
else:
tgt_kps = tgt_ex[keyword_field]
src_ex['src'] = src_str
tgt_ex['tgt'] = tgt_kps
else:
raise Exception('Currently only support json/jsonl data format: %s' % src_path)
if model_name == 'nn':
pred_data = [json.loads(l) for l in open(pred_path, "r")]
else:
pred_data = baseline_pred_loader(pred_path, model_name)
start_time = time.time()
results_dict = evaluate(src_data, tgt_data, pred_data,
unk_token=unk_token,
logger=logger, verbose=verbose,
report_path=report_path,
tokenizer=tokenizer)
total_time = time.time() - start_time
logger.info("Total evaluation time (s): %f" % total_time)
return results_dict
else:
logger.error("")
return None
def summarize_scores(score_dict, ckpt_name,
exp_name=None, pred_name=None, dataset_name=None,
eval_file_path=None, pred_file_path=None, step=None):
avg_dict = {}
avg_dict['checkpoint_name'] = ckpt_name
avg_dict['exp_name'] = exp_name
avg_dict['pred_name'] = pred_name
avg_dict['test_dataset'] = dataset_name
avg_dict['eval_file_path'] = eval_file_path
avg_dict['pred_file_path'] = pred_file_path
if step is not None:
avg_dict['step'] = step
elif ckpt_name.find('_') > 0:
avg_dict['step'] = ckpt_name.rsplit('_')[-1]
else:
avg_dict['step'] = ''
# doc stat
avg_dict['#doc'] = len(score_dict['present_tgt_num'])
avg_dict['#pre_doc'] = len([x for x in score_dict['present_tgt_num'] if x > 0])
avg_dict['#ab_doc'] = len([x for x in score_dict['absent_tgt_num'] if x > 0])
# tgt stat
if 'present_tgt_num' in score_dict and 'absent_tgt_num' in score_dict:
avg_dict['#tgt'] = np.average(score_dict['present_tgt_num']) + np.average(score_dict['absent_tgt_num'])
avg_dict['#pre_tgt'] = np.average(score_dict['present_tgt_num'])
avg_dict['#ab_tgt'] = np.average(score_dict['absent_tgt_num'])
else:
avg_dict['#tgt'] = 0
avg_dict['#pre_tgt'] = 0
avg_dict['#ab_tgt'] = 0
# pred stat
if 'present_pred_num' in score_dict and 'absent_pred_num' in score_dict:
avg_dict['#pred'] = np.average(score_dict['present_pred_num']) + np.average(score_dict['absent_pred_num'])
avg_dict['#pre_pred'] = np.average(score_dict['present_pred_num'])
avg_dict['#ab_pred'] = np.average(score_dict['absent_pred_num'])
else:
avg_dict['#pred'] = 0
avg_dict['#pre_pred'] = 0
avg_dict['#ab_pred'] = 0
avg_dict['#uni_pred'] = np.average(score_dict['unique_pred_num']) if 'unique_pred_num' in score_dict else 0
avg_dict['#dup_pred'] = np.average(score_dict['dup_pred_num']) if 'dup_pred_num' in score_dict else 0
avg_dict['#beam'] = np.average(score_dict['beam_num']) if 'beam_num' in score_dict else 0
avg_dict['#beamstep'] = np.average(score_dict['beamstep_num']) if 'beamstep_num' in score_dict else 0
# remove meta stats from score_dict
if 'unique_pred_num' in score_dict: del score_dict['present_tgt_num']
if 'absent_tgt_num' in score_dict: del score_dict['absent_tgt_num']
if 'present_pred_num' in score_dict: del score_dict['present_pred_num']
if 'absent_pred_num' in score_dict: del score_dict['absent_pred_num']
if 'unique_pred_num' in score_dict: del score_dict['unique_pred_num']
if 'dup_pred_num' in score_dict: del score_dict['dup_pred_num']
if 'beam_num' in score_dict: del score_dict['beam_num']
if 'beamstep_num' in score_dict: del score_dict['beamstep_num']
# average scores of each metric
for score_name, score_list in score_dict.items():
# number of correct phrases
if score_name.find('correct') > 0:
# only keep exact results (partial count is trivial)
if score_name.find('exact') > 0:
avg_dict[score_name] = np.sum(score_list)
continue
# various scores (precision, recall, f-score)
# NOTE! here can be tricky, we can average over all data examples or just valid examples
# in empirical paper, we use the former, to keep it consistent and simple
'''
if score_name.startswith('all') or score_name.startswith('present'):
tmp_scores = [score for score, num in zip(score_list, present_tgt_num) if num > 0]
avg_dict[score_name] = np.average(tmp_scores)
elif score_name.startswith('absent'):
tmp_scores = [score for score, num in zip(score_list, absent_tgt_num) if num > 0]
avg_dict[score_name] = np.average(tmp_scores)
else:
logger.error("NotImplementedError: found key %s" % score_name)
raise NotImplementedError
'''
avg_dict[score_name] = np.average(score_list)
columns = list(avg_dict.keys())
# print(columns)
summary_df = pd.DataFrame.from_dict(avg_dict, orient='index').transpose()[columns]
# print('\n')
# print(list(summary_df.columns))
# input()
return summary_df
def gather_eval_results(eval_root_dir, report_csv_dir=None, tokenizer=None, empirical_result=False):
dataset_scores_dict = {}
assert tokenizer is not None
evals_to_skip = set()
if report_csv_dir:
# load previous reports
for report_csv_file in os.listdir(report_csv_dir):
if not report_csv_file.endswith('.%s.csv' % tokenizer): continue
dataset_name = report_csv_file.split('.')[0] # truncate 'tokenizer.csv'
prev_df = pd.read_csv(os.path.join(report_csv_dir, report_csv_file))
prev_df = prev_df.loc[:, ~prev_df.columns.str.contains('^Unnamed')]
dataset_scores_dict[dataset_name] = prev_df
for eval_path in prev_df.eval_file_path:
evals_to_skip.add(eval_path)
eval_suffix = '.%s.eval' % tokenizer
total_file_num = len([file for subdir, dirs, files in os.walk(eval_root_dir)
for file in files if file.endswith(eval_suffix)])
file_count = 0
for subdir, dirs, files in os.walk(eval_root_dir):
for file in files:
if not file.endswith(eval_suffix): continue
file_count += 1
if file_count % 10 == 0: print("file_count/file_num=%d/%d" % (file_count, total_file_num))
eval_file_path = os.path.join(subdir, file)
pred_file_path = eval_file_path[: -len(eval_suffix)]+'.pred' # might be a very bad way
if eval_file_path in evals_to_skip: continue
if not os.path.exists(pred_file_path):
# only count ones that both pred/eval exist, and remove some leftover files
if os.path.exists(eval_file_path): os.remove(eval_file_path)
report_file_path = eval_file_path[:-4]+'report'
if os.path.exists(report_file_path): os.remove(report_file_path)
continue
if empirical_result:
# legacy result
exp_step_name = subdir.strip('/')[subdir.strip('/').rfind('/') + 1:]
exp_name, step = exp_step_name.split('_step_')
dataset_name = file[: file.find(eval_suffix)]
ckpt_name = 'checkpoint_step_%s' % step
pred_name = 'meng17-one2seq-beam50-maxlen40' # very hard-coded
else:
file_name = file[: file.find(eval_suffix)]
ckpt_name = file_name[: file.rfind('-')] if file.find('-') > 0 else file_name
# exp_dirname = re.search('.*/(.*?)/outputs', subdir).group(1)
# exp_name = exp_dirname.split('/')[1]
exp_name = re.search('.*/(.*?)/outputs', subdir).group(1)
pred_name = re.search('outputs/(.*?)/pred', subdir).group(1) # very hard-coded
dataset_name = file_name[file.rfind('-') + 1: ]
dataset_name = dataset_name[5:] if dataset_name.startswith('data_') else dataset_name
step = None
# key is dataset name, value is a dict whose key is metric name and value is a list of floats
try:
score_dict = json.load(open(eval_file_path, 'r'))
except:
print('error while loading %s' % eval_file_path)
continue
# ignore scores where no tgts available and return the average
score_df = summarize_scores(score_dict,
ckpt_name, exp_name, pred_name, dataset_name,
eval_file_path, pred_file_path, step=step)
# print(df_key)
if dataset_name in dataset_scores_dict:
dataset_scores_dict[dataset_name] = dataset_scores_dict[dataset_name].append(score_df)
else:
dataset_scores_dict[dataset_name] = score_df
# if file_count > 20:
# break
#
# if file_count > 20:
# break
if report_csv_dir:
for dataset_name, score_df in dataset_scores_dict.items():
report_csv_path = os.path.join(report_csv_dir, dataset_name + '.%s.csv' % tokenizer)
print("Writing summary to: %s" % (report_csv_path))
score_df = score_df.sort_values(by=['exp_name', 'step'])
score_df.to_csv(report_csv_path, index=False)
# print(score_df.to_csv(index=False))
return dataset_scores_dict
def init_opt():
parser = argparse.ArgumentParser()
# Input/output options
parser.add_argument('--data', '-data', required=True,
help="Path to the source/target file of groundtruth data.")
parser.add_argument('--pred_dir', '-pred_dir', required=True,
help="Directory to pred folders, each folder contains .pred files, each line is a JSON dict about predicted keyphrases.")
parser.add_argument('--output_dir', '-output_dir',
help="Path to output log/results.")
parser.add_argument('--unk_token', '-unk_token', default="<unk>",
help=".")
parser.add_argument('--verbose', '-v', action='store_true',
help=".")
parser.add_argument('-testsets', nargs='+', type=str, default=["inspec", "krapivin", "nus", "semeval", "duc"], help='Specify datasets to test on')
opt = parser.parse_args()
return opt
if __name__ == '__main__':
opt = init_opt()
score_dicts = {}
for ckpt_name in os.listdir(opt.pred_dir):
if not os.path.isdir(os.path.join(opt.pred_dir, ckpt_name)):
continue
for dataname in opt.testsets:
src_path = os.path.join(opt.data, dataname, "%s_test.src" % dataname)
tgt_path = os.path.join(opt.data, dataname, "%s_test.tgt" % dataname)
pred_path = os.path.join(opt.pred_dir, ckpt_name, "%s.pred" % dataname)
if not os.path.exists(opt.output_dir):
os.makedirs(opt.output_dir)
if not os.path.exists(os.path.join(opt.output_dir, 'pred', ckpt_name)):
os.makedirs(os.path.join(opt.output_dir, 'pred', ckpt_name))
if not os.path.exists(os.path.join(opt.output_dir, 'eval')):
os.makedirs(os.path.join(opt.output_dir, 'eval'))
logger = init_logger(opt.output_dir + "kp_evaluate.%s.eval.log" % dataname)
report_path = os.path.join(opt.output_dir, 'pred', ckpt_name, '%s.report.txt' % dataname)
score_path = os.path.join(opt.output_dir, 'eval', ckpt_name + '-%s.eval' % dataname)
logger.info("Evaluating %s" % dataname)
if not os.path.exists(score_path):
score_dict = keyphrase_eval(src_path=src_path,
tgt_path=tgt_path,
pred_path=pred_path,
unk_token = '<unk>',
verbose = opt.verbose,
logger = logger,
report_path = report_path
)
logger.info(kp_results_to_str(score_dict))
with open(score_path, 'w') as output_json:
output_json.write(json.dumps(score_dict))
score_dicts[dataname] = score_dict
gather_eval_results(eval_root_dir=os.path.join(opt.output_dir, 'eval'),
report_csv_dir=os.path.join(opt.output_dir, 'summary_%s.csv' % ('%s')))
logger.info("Done!")