Skip to content

Latest commit

 

History

History
149 lines (106 loc) · 6.81 KB

README.md

File metadata and controls

149 lines (106 loc) · 6.81 KB

Build status

C# to Kafka via Rx

This project demonstrates how to listen to a continuous stream of Kafka events from C#/.Net, using IObservables.

Requirements:

  1. All four parts of the the Confluent Platform need to be up and running: Zookeeper, Kafka, the Schema Registry and the Rest Client. I'm running them on a Linux virtual machine, and I didn't need to do any configuration changes.

In four different consoles, run these commands:

$ ./bin/zookeeper-server-start ./etc/kafka/zookeeper.properties

$ ./bin/schema-registry-start ./etc/schema-registry/schema-registry.properties

$ ./bin/kafka-server-start ./etc/kafka/server.properties

$ ./bin/kafka-rest-start
  1. The examples here require the Confluent Rest Client, which is installed via NuGet.

Create an RX Observable

Once you have a client and a consumerInstance, you can subscribe to a topic. The observable operates as a non-blocking infinte loop, waking up the thread every so often to poll the API. You can specify the interval as a TimeSpan.

In this case, we don't want the IObservable to terminate if an error occurs, so the RxConsumer will return a Try as the payload. This means you will either receive an Exception wrapped in a Failure (which subclasses Try) or the expected result wrapped in a Success (which also subclasses Try).

    var consumer = new RxConsumer(client, consumerInstance, topic);
 
    // Act
    var observable = consumer.GetRecordStream<String, RxConsumerTests.LogMessage>(
        TimeSpan.FromSeconds(5),
        ThreadPoolScheduler.Instance)
            .Subscribe(successResult =>
            {
                 Console.WriteLine("Success: " + successResult.IsSuccess);
                 if (successResult.IsSuccess)
                 {
                     Console.WriteLine(successResult.Value.Key + "=" + successResult.Value.Value.Message);
                 }
                 else
                 {
                     Console.WriteLine("ERROR: " + successResult.Exception.Message);
                 }
            }
    );

When you're done with the observable subscription, make sure you call Dispose() as you normally would. This will terminate the polling thread.

If you are shutting down the client, you need to deregister it with the server:

    client.DeleteConsumerAsync(consumerInstance)

Console stream listener

The console listener is Kafka.Rx.NET.Console.exe. You can run it with no arguments to see the a list of command-line arguments. (The demo console listener is listening specifically for a LogMessage Avro message.)

This example will create a consumer with instanceid "0" in the group "mytestgroup", listening to "mytopic". By default it polls, then waits 500ms before repeating.

> Kafka.Rx.NET.Console.exe -u http://myhost:8082 -i 0 -g mytestgroup -t mytopic

Add an Event to the Stream

This will add two "LogMessage" events to the "rxtest" topic. The two messages should appear in the console listener.

curl -i -X POST -H "Content-Type: application/vnd.kafka.avro.v1+json" --data '{ "value_schema": "{\"type\": \"record\", \"name\": \"LogMessage\", \"fields\": [{\"name\": \"message\", \"type\": \"string\"}]}", "records": [ {"value": {"message": "Hello #1"}},{"value": {"message": "Hello #2"}}]}' http://localhost:8082/topics/rxtest

Unit Testing

The observable can be unit tested using the TestScheduler from the Microsoft.Reactive.Testing library. In production we would schedule the API calls using ThreadPoolScheduler.Instance, but we can simulate clock ticks using the TestScheduler.

RxConsumerTests.cs makes use of TestScheduler.AdvanceBy(...) to simulate the passage of time, and to keep our unit tests quick and deterministic.

Appendix: Use Confluent.RestClient to create a Client & Consumer

To connect via the Confluent.RestClient , you have to create an IConfluentClient, then use that client to request a ConsumerInstance. (The confluent REST API documentation has some more information on creating a client and consumer.) An example of creating a client:

public class KafkaClientSettings : IConfluentClientSettings
{
    public string KafkaBaseUrl { get; set; }
}

public static IConfluentClient CreateConfluentClient(String baseUrl)
{
    var settings = new KafkaClientSettings
    {
        KafkaBaseUrl = baseUrl
    };
    return new ConfluentClient(settings);
}

///...
var client = CreateConfluentClient("http://192.168.1.2:8082");

The client can then be used to create a ConsumerInstance via a CreateConsumerRequest. The creation request can specify a Consumer Group, and an Instance Id within that group. Each Consumer group will receive a copy of every message, but only one Instance within each group will process that message Ref.

A consumer instance can be created like this:

public static async Task<ConfluentResponse<ConsumerInstance>> CreateConsumerInstance(
    IConfluentClient client,
    string instanceId,
    string consumerGroupName)
{
    var request = new CreateConsumerRequest
    {
        AutoCommitEnabled = true,
        InstanceId = instanceId,
        MessageFormat = MessageFormat.Avro
    };

    return await client.CreateConsumerAsync(consumerGroupName, request);
}

public static ConsumerInstance ConsumerInstance(
    IConfluentClient client,
    string instanceId,
    string consumerGroupName)
{
    var consumerInstanceTask = Setup.CreateConsumerInstance(client, instanceId, consumerGroupName).Result;

    if (!consumerInstanceTask.IsSuccess())
    {
        throw new ApplicationException("Error " + consumerInstanceTask.Error.ErrorCode + ": " + consumerInstanceTask.Error.Message);
    }
    return consumerInstanceTask.Payload;
}

TODO

  • Add different commit strategies
  • Produce events via observable
  • Handle broker leader changes / find leader