forked from ageron/handson-ml3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
environment.yml
46 lines (46 loc) · 2.63 KB
/
environment.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
name: homl3
channels:
- conda-forge
- defaults
dependencies:
- box2d-py # used only in chapter 18, exercise 8
- ftfy=5.5 # used only in chapter 16 by the transformers library
- graphviz # used only in chapter 6 for dot files
- python-graphviz # used only in chapter 6 for dot files
- ipython=8.0 # a powerful Python shell
- ipywidgets=7.6 # optionally used only in chapter 11 for tqdm in Jupyter
- joblib=1.1 # used only in chapter 2 to save/load Scikit-Learn models
- jupyterlab=3.2 # to edit and run Jupyter notebooks
- matplotlib=3.5 # beautiful plots. See tutorial tools_matplotlib.ipynb
- nbdime=3.1 # optional tool to diff Jupyter notebooks
- nltk=3.6 # optionally used in chapter 3, exercise 4
- numexpr=2.8 # used only in the Pandas tutorial for numerical expressions
- numpy=1.22 # Powerful n-dimensional arrays and numerical computing tools
- pandas=1.4 # data analysis and manipulation tool
- pillow=9.0 # image manipulation library, (used by matplotlib.image.imread)
- pip # Python's package-management system
- py-xgboost=1.5 # used only in chapter 6 for optimized Gradient Boosting
- pyglet=1.5 # used only in chapter 18 to render environments
- pyopengl=3.1 # used only in chapter 18 to render environments
- python=3.9 # Python! Not using latest version as some libs lack support
#- pyvirtualdisplay=2.2 # used only in chapter 18 if on headless server
- requests=2.27 # used only in chapter 19 for REST API queries
- scikit-learn=1.0 # machine learning library
- scipy=1.8 # scientific/technical computing library
- tqdm=4.62 # a progress bar library
- wheel # built-package format for pip
- widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks
- pip:
- keras-tuner~=1.1.2 # used in chapters 10 and 19 for hyperparameter tuning
- tensorboard-plugin-profile~=2.5.0 # profiling plugin for TensorBoard
- tensorboard~=2.8.0 # TensorFlow's visualization toolkit
- tensorflow-addons~=0.16.1 # used in chapters 11 & 16 (for AdamW & seq2seq)
- tensorflow-datasets~=4.5.2 # datasets repository, ready to use
- tensorflow-hub~=0.12.0 # trained ML models repository, ready to use
- tensorflow-serving-api~=2.8.0 # or tensorflow-serving-api-gpu if gpu
- tensorflow~=2.8.0 # Deep Learning library
- transformers~=4.16.2 # Natural Language Processing lib for TF or PyTorch
- urlextract~=1.5.0 # optionally used in chapter 3, exercise 4
- gym[atari,accept-rom-license]~=0.21.0 # used only in chapter 18
- google-cloud-aiplatform~=1.12.0 # used only in chapter 19
- google-cloud-storage~=2.2.1 # used only in chapter 19