forked from uMehliseli/AIF_Allocation_Tool
-
Notifications
You must be signed in to change notification settings - Fork 2
/
dashboard.py
602 lines (537 loc) · 20.4 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# -------------------------------------------------------------------------
# Copyright (c) 2021 NHS England and NHS Improvement. All rights reserved.
# Licensed under the MIT License and the Open Government License v3. See
# license.txt in the project root for license information.
# -------------------------------------------------------------------------
"""
FILE: dashboard.py
DESCRIPTION: Streamlit weighted capitation tool
CONTRIBUTORS: Craig Shenton, Jonathan Pearson, Mattia Ficarelli
CONTACT: [email protected]
CREATED: 2021-12-14
VERSION: 0.0.1
"""
# Libraries
# -------------------------------------------------------------------------
# python
import json
import time
import base64
import io
import zipfile
import regex as re
from datetime import datetime
# local
import utils
# 3rd party:
import streamlit as st
import pandas as pd
from streamlit_folium import folium_static
import folium
st.set_page_config(
page_title="ICB Place Based Allocation Tool 2022/23",
page_icon="https://www.england.nhs.uk/wp-content/themes/nhsengland/static/img/favicon.ico",
layout="centered",
initial_sidebar_state="expanded",
menu_items={
"Get Help": "https://www.england.nhs.uk/allocations/",
"Report a bug": "https://github.com/nhsengland/AIF_Allocation_Tool",
"About": "This tool is designed to support allocation at places by allowing places to be defined by aggregating GP Practices within an ICB. Please refer to the User Guide for instructions. For more information on the latest allocations, including contact details, please refer to: [https://www.england.nhs.uk/allocations/](https://www.england.nhs.uk/allocations/)",
},
)
padding = 1
st.markdown(
f""" <style>
.reportview-container .main .block-container{{
padding-top: {padding}rem;
}} </style> """,
unsafe_allow_html=True,
)
# Set default place in session
# -------------------------------------------------------------------------
if len(st.session_state) < 1:
st.session_state["Default Place"] = {
"gps": [
"B85005: Shepley Health Centre",
"B85022: Honley Surgery",
"B85061: Skelmanthorpe Family Doctors",
"B85026: Kirkburton Health Centre",
],
"icb": "NHS West Yorkshire ICB",
}
if "places" not in st.session_state:
st.session_state.places = ["Default Place"]
# Functions & Calls
# -------------------------------------------------------------------------
# aggregate on a query and set of aggregations
def aggregate(data, query, name, on, aggregations):
df = data.query(query)
if on not in df.columns:
df.insert(loc=0, column=on, value=name)
df_group = df.groupby(on).agg(aggregations)
df_group = df_group.astype(int)
return df, df_group
# calculate index of weighted populations
def get_index(place_indices, icb_indices, index_names, index_numerator):
icb_indices[index_names] = icb_indices[index_numerator].div(
icb_indices["GP pop"].values, axis=0
)
place_indices[index_names] = (
place_indices[index_numerator]
.div(place_indices["GP pop"].values, axis=0)
.div(icb_indices[index_names].values, axis=0)
)
return place_indices, icb_indices
# render svg image
def render_svg(svg):
"""Renders the given svg string."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
st.write(html, unsafe_allow_html=True)
# Download functionality
@st.cache
def convert_df(df):
return df.to_csv(index=False).encode("utf-8")
def metric_calcs(group_need_indices, metric_index):
place_metric = round(group_need_indices[metric_index][0].astype(float), 2)
icb_metric = round(place_metric - 1, 2)
return place_metric, icb_metric
aggregations = {
"GP pop": "sum",
"Weighted G&A pop": "sum",
"Weighted Community pop": "sum",
"Weighted Mental Health pop": "sum",
"Weighted Maternity pop": "sum",
"Weighted Prescribing pop": "sum",
"Weighted Health Inequalities pop": "sum",
"Overall Weighted pop": "sum",
}
index_numerator = [
"Weighted G&A pop",
"Weighted Community pop",
"Weighted Mental Health pop",
"Weighted Maternity pop",
"Weighted Prescribing pop",
"Weighted Health Inequalities pop",
"Overall Weighted pop",
]
index_names = [
"G&A Index",
"Community Index",
"Mental Health Index",
"Maternity Index",
"Prescribing Index",
"Health Inequalities Index",
"Overall Index",
]
# Markdown
# -------------------------------------------------------------------------
# NHS Logo
svg = """
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 300 16">
<path d="M0 0h40v16H0z" fill="#005EB8"></path>
<path d="M3.9 1.5h4.4l2.6 9h.1l1.8-9h3.3l-2.8 13H9l-2.7-9h-.1l-1.8 9H1.1M17.3 1.5h3.6l-1 4.9h4L25 1.5h3.5l-2.7 13h-3.5l1.1-5.6h-4.1l-1.2 5.6h-3.4M37.7 4.4c-.7-.3-1.6-.6-2.9-.6-1.4 0-2.5.2-2.5 1.3 0 1.8 5.1 1.2 5.1 5.1 0 3.6-3.3 4.5-6.4 4.5-1.3 0-2.9-.3-4-.7l.8-2.7c.7.4 2.1.7 3.2.7s2.8-.2 2.8-1.5c0-2.1-5.1-1.3-5.1-5 0-3.4 2.9-4.4 5.8-4.4 1.6 0 3.1.2 4 .6" fill="white"></path>
</svg>
"""
render_svg(svg)
st.title("ICB Place Based Allocation Tool 2022/23")
st.markdown("**Find the latest tool here: [ICB Place Based Allocation Tool 2023/24 and 2024/25](https://aif-allocation-tool-202324-202425.streamlit.app)**")
st.markdown("Last Updated 6th January 2022")
# Import Data
# -------------------------------------------------------------------------
data = utils.get_data()
icb = utils.get_sidebar(data)
# SIDEBAR
# -------------------------------------------------------------------------
st.sidebar.subheader("Create New Place")
icb_choice = st.sidebar.selectbox("ICB Filter:", icb, help="Select an ICB")
lad = data["LA District name"].loc[data["ICB name"] == icb_choice].unique().tolist()
lad_choice = st.sidebar.multiselect(
"Local Authority District Filter:", lad, help="Select a Local Authority District"
)
if lad_choice == []:
practices = (
data["practice_display"].loc[data["ICB name"] == icb_choice].unique().tolist()
)
else:
practices = (
data["practice_display"].loc[(data["LA District name"].isin(lad_choice)) & (data["ICB name"] == icb_choice)].tolist()
)
select_all_LAD = st.sidebar.checkbox("Select all GP Practices")
if select_all_LAD:
practice_choice = practices
else:
practice_choice = st.sidebar.multiselect(
"Select GP Practices:",
practices,
help="Select GP Practices to aggregate into a single defined 'place'",
)
place_name = st.sidebar.text_input(
"Name your Place",
"",
help="Give your defined place a name to identify it",
)
if st.sidebar.button("Save Place", help="Save place to session data"):
if practice_choice == [] or place_name == "Default Place":
if practice_choice == []:
st.sidebar.error("Please select one or more GP practices")
if place_name == "Default Place":
st.sidebar.error(
"Please rename your place to something other than 'Default Place'"
)
if place_name == "":
st.sidebar.error("Please give your place a name")
else:
if practice_choice == [] or place_name == "Default Place":
print("")
else:
if (
len(st.session_state.places) <= 1
and st.session_state.places[0] == "Default Place"
):
del [st.session_state["Default Place"]]
del [st.session_state.places[0]]
if [place_name] not in st.session_state:
st.session_state[place_name] = {
"gps": practice_choice,
"icb": icb_choice,
}
if "places" not in st.session_state:
st.session_state.places = [place_name]
if place_name not in st.session_state.places:
st.session_state.places = st.session_state.places + [place_name]
else:
if [place_name] not in st.session_state:
st.session_state[place_name] = {
"gps": practice_choice,
"icb": icb_choice,
}
if "places" not in st.session_state:
st.session_state.places = [place_name]
if place_name not in st.session_state.places:
st.session_state.places = st.session_state.places + [place_name]
st.sidebar.write("-" * 34) # horizontal separator line.
session_state_dict = dict.fromkeys(st.session_state.places, [])
for key, value in session_state_dict.items():
session_state_dict[key] = st.session_state[key]
session_state_dict["places"] = st.session_state.places
session_state_dump = json.dumps(session_state_dict, indent=4, sort_keys=False)
# Use file uploaded to read in groups of practices
advanced_options = st.sidebar.checkbox("Advanced Options")
if advanced_options:
# downloads
st.sidebar.download_button(
label="Download session data as JSON",
data=session_state_dump,
file_name="session.json",
mime="text/json",
)
# uploads
form = st.sidebar.form(key="my-form")
group_file = form.file_uploader(
"Upload previous session data as JSON", type=["json"]
)
submit = form.form_submit_button("Submit")
if submit:
if group_file is not None:
d = json.load(group_file)
st.session_state.places = d["places"]
for place in d["places"]:
st.session_state[place] = d[place]
my_bar = st.sidebar.progress(0)
for percent_complete in range(100):
time.sleep(0.01)
my_bar.progress(percent_complete + 1)
my_bar.empty()
see_session_data = st.sidebar.checkbox("Show Session Data")
# BODY
# -------------------------------------------------------------------------
select_index = len(st.session_state.places) - 1 # find n-1 index
placeholder = st.empty()
option = placeholder.selectbox(
"Select Place", (st.session_state.places), index=select_index, key="before"
)
# DELETE PLACE
# -------------------------------------------------------------------------
if "after" not in st.session_state:
st.session_state.after = st.session_state.before
label = "Delete Current Selection"
delete_place = st.button(label, help=label)
my_bar_delete = st.empty()
if delete_place:
if len(st.session_state.places) <= 1:
del [st.session_state[st.session_state.after]]
if "Default Group" not in st.session_state:
st.session_state["Default Place"] = {
"gps": [
"B85005: Shepley Health Centre",
"B85022: Honley Surgery",
"B85061: Skelmanthorpe Family Doctors",
"B85026: Kirkburton Health Centre",
],
"icb": "NHS West Yorkshire ICB",
}
if "places" not in st.session_state:
st.session_state.places = ["Default Place"]
else:
st.session_state["Default Place"] = {
"gps": [
"B85005: Shepley Health Centre",
"B85022: Honley Surgery",
"B85061: Skelmanthorpe Family Doctors",
"B85026: Kirkburton Health Centre",
],
"icb": "NHS West Yorkshire ICB",
}
st.session_state.places = ["Default Place"]
st.session_state.after = "Default Place"
st.warning(
"All places deleted. 'Default Place' reset to default. Please create a new place."
)
my_bar_delete.progress(0)
for percent_complete in range(100):
time.sleep(0.01)
my_bar_delete.progress(percent_complete + 1)
my_bar_delete.empty()
else:
del [st.session_state[st.session_state.after]]
del [
st.session_state.places[
st.session_state.places.index(st.session_state.after)
]
]
my_bar_delete.progress(0)
for percent_complete in range(100):
time.sleep(0.01)
my_bar_delete.progress(percent_complete + 1)
my_bar_delete.empty()
select_index = len(st.session_state.places) - 1 # find n-1 index
option = placeholder.selectbox(
"Select Place", (st.session_state.places), index=select_index, key="after"
)
icb_name = st.session_state[st.session_state.after]["icb"]
group_gp_list = st.session_state[st.session_state.after]["gps"]
# MAP
# -------------------------------------------------------------------------
map = folium.Map(location=[52, 0], zoom_start=10, tiles="openstreetmap")
lat = []
long = []
for gp in group_gp_list:
latitude = data["Latitude"].loc[data["practice_display"] == gp].item()
longitude = data["Longitude"].loc[data["practice_display"] == gp].item()
lat.append(latitude)
long.append(longitude)
folium.Marker(
[latitude, longitude],
popup=str(gp),
icon=folium.Icon(color="darkblue", icon="fa-user-md", prefix="fa"),
).add_to(map)
# bounds method https://stackoverflow.com/a/58185815
map.fit_bounds(
[[min(lat) - 0.02, min(long)], [max(lat) + 0.02, max(long)]]
) # add buffer to north
# call to render Folium map in Streamlit
folium_static(map, width=700, height=300)
# Group GP practice display
list_of_gps = re.sub(
"\w+:",
"",
str(group_gp_list).replace("'", "").replace("[", "").replace("]", ""),
)
st.info("**Selected GP Practices: **" + list_of_gps)
gp_query = "practice_display == @place_state"
icb_query = "`ICB name` == @icb_state" # escape column names with backticks https://stackoverflow.com/a/56157729
# dict to store all dfs sorted by ICB
dict_obj = {}
df_list = []
for place in st.session_state.places:
place_state = st.session_state[place]["gps"]
icb_state = st.session_state[place]["icb"]
# get place aggregations
place_data, place_groupby = aggregate(
data, gp_query, place, "Place Name", aggregations
)
# get ICB aggregations
icb_data, icb_groupby = aggregate(
data, icb_query, icb_state, "ICB name", aggregations
)
# index calcs
place_indices, icb_indices = get_index(
place_groupby, icb_groupby, index_names, index_numerator
)
icb_indices.insert(loc=0, column="Place / ICB", value=icb_state)
place_indices.insert(loc=0, column="Place / ICB", value=place)
if icb_state not in dict_obj:
dict_obj[icb_state] = [icb_indices, place_indices]
else:
dict_obj[icb_state].append(place_indices)
metric_cols = [
"Overall Index",
"G&A Index",
"Community Index",
"Mental Health Index",
"Maternity Index",
]
# add dict values to list
for obj in dict_obj:
df_list.append(dict_obj[obj])
# flaten list for concatination
flat_list = [item for sublist in df_list for item in sublist]
large_df = pd.concat(flat_list, ignore_index=True)
large_df = large_df.round(decimals=3)
# "Weighted G&A pop",
# "Weighted Community pop",
# "Weighted Mental Health pop",
# "Weighted Maternity pop",
# "Weighted Health Inequalities pop",
# "Weighted Prescribing pop",
# "Overall Weighted pop",
# order = [
# 0,
# -9,
# -8,
# -7,
# -6,
# -5,
# -4,
# -2,
# -3,
# -1,
# 1,
# 2,
# 3,
# 4,
# 5,
# 6,
# 7,
# 8,
# 9,
# 10,
# ] # setting column's order
# large_df = large_df[[large_df.columns[i] for i in order]]
# All metrics - didn't work well, but might be useful
# for option in dict_obj:
# st.write("**", option, "**")
# for count, df in enumerate(dict_obj[option][1:]): # skip first (ICB) metric
# # Group GP practice display
# group_name = dict_obj[option][count + 1]["Group / ICB"].item()
# group_gps = (
# "**"
# + group_name
# + " : **"
# + re.sub(
# "\w+:",
# "",
# str(st.session_state[group_name]["gps"])
# .replace("'", "")
# .replace("[", "")
# .replace("]", ""),
# )
# )
# st.info(group_gps)
# cols = st.columns(len(metric_cols))
# for metric, name in zip(metric_cols, metric_names):
# place_metric, icb_metric = metric_calcs(dict_obj[option][count], metric,)
# cols[metric_cols.index(metric)].metric(
# name, place_metric, # icb_metric, delta_color="inverse"
# )
# Metrics
# -------------------------------------------------------------------------
metric_cols = [
"G&A Index",
"Community Index",
"Mental Health Index",
"Maternity Index",
"Prescribing Index",
"Health Inequalities Index",
"Overall Index",
]
metric_names = [
"Gen & Acute",
"Community*",
"Mental Health",
"Maternity",
"Prescribing",
"Health Inequal",
"Overall Index",
]
df = large_df.loc[large_df["Place / ICB"] == st.session_state.after]
df = df.reset_index(drop=True)
st.write("**Relative Need Index**")
cols = st.columns(len(metric_cols))
for metric, name in zip(metric_cols, metric_names):
place_metric, icb_metric = metric_calcs(
df,
metric,
)
cols[metric_cols.index(metric)].metric(
name,
place_metric, # icb_metric, delta_color="inverse"
)
# Downloads
# -------------------------------------------------------------------------
current_date = datetime.now().strftime("%Y-%m-%d")
st.subheader("Download Data")
print_table = st.checkbox("Preview data download", value=True)
if print_table:
with st.container():
utils.write_table(large_df)
csv = convert_df(large_df)
with open("docs/ICB allocation tool documentation.txt", "rb") as fh:
readme_text = io.BytesIO(fh.read())
session_state_dict = dict.fromkeys(st.session_state.places, [])
for key, value in session_state_dict.items():
session_state_dict[key] = st.session_state[key]
session_state_dict["places"] = st.session_state.places
session_state_dump = json.dumps(session_state_dict, indent=4, sort_keys=False)
# https://stackoverflow.com/a/44946732
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file:
for file_name, data in [
("ICB allocation calculations.csv", io.BytesIO(csv)),
("ICB allocation tool documentation.txt", readme_text),
(
"ICB allocation tool configuration file.json",
io.StringIO(session_state_dump),
),
]:
zip_file.writestr(file_name, data.getvalue())
btn = st.download_button(
label="Download ZIP",
data=zip_buffer.getvalue(),
file_name="ICB allocation tool %s.zip" % current_date,
mime="application/zip",
)
st.subheader("Help and Support")
with st.expander("About the ICB Place Based Allocation Tool"):
st.subheader("Allocations")
st.markdown(
"This tool is designed to support allocation at places by allowing places to be defined by aggregating GP Practices within an ICB. Please refer to the User Guide for instructions."
)
st.markdown("The tool estimates the relative need for places within the ICB.")
st.markdown(
"The Relative Need Index for ICB (i) and Defined Place (p) is given by the formula:"
)
st.latex(r""" (WP_p/GP_p)\over (WP_i/GP_i)""")
st.markdown(
"Where *WP* is the weighted population for a given need and *GP* is the GP practice population."
)
st.markdown(
"This tool is based on estimated need for 2022/23 by utilising weighted populations projected from the October 2021 GP Registered Practice Populations."
)
st.markdown(
"More information on the latest allocations, including contact details, can be found [here](https://www.england.nhs.uk/allocations/)."
)
st.subheader("Caveats and Notes")
st.markdown(
"*The Community Services index relates to the half of Community Services that are similarly distributed to district nursing. The published Community Services target allocation is calculated using the Community Services model. This covers 50% of Community Services. The other 50% is distributed through the General & Acute model."
)
st.markdown("")
st.info(
"For support with using the AIF Allocation tool please email: [[email protected]](mailto:[email protected])"
)
# Show Session Data
# -------------------------------------------------------------------------
if see_session_data:
st.subheader("Session Data")
st.session_state