-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
backtest_uk_gsp.py
432 lines (329 loc) · 14.8 KB
/
backtest_uk_gsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
"""
A script to run backtest for PVNet and the summation model for UK regional and national
Use:
- This script uses hydra to construct the config, just like in `run.py`. So you need to make sure
that the data config is set up appropriate for the model being run in this script
- The PVNet and summation model checkpoints; the time range over which to make predictions are made;
and the output directory where the results near the top of the script as hard coded user
variables. These should be changed.
```
python backtest_uk_gsp.py
```
"""
try:
import torch.multiprocessing as mp
mp.set_start_method("spawn", force=True)
mp.set_sharing_strategy("file_system")
except RuntimeError:
pass
import logging
import os
import sys
import hydra
import numpy as np
import pandas as pd
import torch
import xarray as xr
from ocf_datapipes.batch import (
BatchKey,
NumpyBatch,
batch_to_tensor,
copy_batch_to_device,
)
from ocf_datapipes.config.load import load_yaml_configuration
from ocf_datapipes.load import OpenGSP
from ocf_datapipes.training.common import _get_datapipes_dict
from ocf_datapipes.training.pvnet_all_gsp import construct_sliced_data_pipeline, create_t0_datapipe
from ocf_datapipes.utils.consts import ELEVATION_MEAN, ELEVATION_STD
from omegaconf import DictConfig
# TODO: Having this script rely on pvnet_app sets up a circular dependency. The function
# `preds_to_dataarray()` should probably be moved here
from pvnet_app.utils import preds_to_dataarray
from torch.utils.data import DataLoader
from torch.utils.data.datapipes.iter import IterableWrapper
from tqdm import tqdm
from pvnet.load_model import get_model_from_checkpoints
# ------------------------------------------------------------------
# USER CONFIGURED VARIABLES
output_dir = "/mnt/disks/extra_batches/test_backtest"
# Local directory to load the PVNet checkpoint from. By default this should pull the best performing
# checkpoint on the val set
model_chckpoint_dir = "/home/jamesfulton/repos/PVNet/checkpoints/q911tei5"
# Local directory to load the summation model checkpoint from. By default this should pull the best
# performing checkpoint on the val set. If set to None a simple sum is used instead
summation_chckpoint_dir = (
"/home/jamesfulton/repos/PVNet_summation/checkpoints/pvnet_summation/73oa4w9t"
)
# Forecasts will be made for all available init times between these
start_datetime = "2022-05-08 00:00"
end_datetime = "2022-05-08 00:30"
# ------------------------------------------------------------------
# SET UP LOGGING
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# ------------------------------------------------------------------
# DERIVED VARIABLES
# This will run on GPU if it exists
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------------------------------------------------
# GLOBAL VARIABLES
# The frequency of the GSP data
FREQ_MINS = 30
# When sun as elevation below this, the forecast is set to zero
MIN_DAY_ELEVATION = 0
# All regional GSP IDs - not including national which is treated separately
ALL_GSP_IDS = np.arange(1, 318)
# ------------------------------------------------------------------
# FUNCTIONS
def get_gsp_ds(config_path: str) -> xr.Dataset:
"""Load GSP data from the path in the data config.
Args:
config_path: Path to the data configuration file
Returns:
xarray.Dataset of PVLive truths and capacities
"""
config = load_yaml_configuration(config_path)
gsp_datapipe = OpenGSP(gsp_pv_power_zarr_path=config.input_data.gsp.gsp_zarr_path)
ds_gsp = next(iter(gsp_datapipe))
return ds_gsp
def get_available_t0_times(start_datetime, end_datetime, config_path):
"""Filter a list of t0 init-times to those for which all required input data is available.
Args:
start_datetime: First potential t0 time
end_datetime: Last potential t0 time
config_path: Path to data config file
Returns:
pandas.DatetimeIndex of the init-times available for required inputs
"""
start_datetime = pd.Timestamp(start_datetime)
end_datetime = pd.Timestamp(end_datetime)
# Open all the input data so we can check what of the potential data init times we have input
# data for
datapipes_dict = _get_datapipes_dict(config_path, production=False)
# Pop out the config file
config = datapipes_dict.pop("config")
# We are going to abuse the `create_t0_datapipe()` function to find the init-times in
# potential_init_times which we have input data for. To do this, we will feed in some fake GSP
# data which has the potential_init_times as timestamps. This is a bit hacky but works for now
# Set up init-times we would like to make predictions for
potential_init_times = pd.date_range(start_datetime, end_datetime, freq=f"{FREQ_MINS}min")
# We buffer the potential init-times so that we don't lose any init-times from the
# start and end. Again this is a hacky step
history_duration = pd.Timedelta(config.input_data.gsp.history_minutes, "min")
forecast_duration = pd.Timedelta(config.input_data.gsp.forecast_minutes, "min")
buffered_potential_init_times = pd.date_range(
start_datetime - history_duration, end_datetime + forecast_duration, freq=f"{FREQ_MINS}min"
)
ds_fake_gsp = buffered_potential_init_times.to_frame().to_xarray().rename({"index": "time_utc"})
ds_fake_gsp = ds_fake_gsp.rename({0: "gsp_pv_power_mw"})
ds_fake_gsp = ds_fake_gsp.expand_dims("gsp_id", axis=1)
ds_fake_gsp = ds_fake_gsp.assign_coords(
gsp_id=[0],
x_osgb=("gsp_id", [0]),
y_osgb=("gsp_id", [0]),
)
ds_fake_gsp = ds_fake_gsp.gsp_pv_power_mw.astype(float) * 1e-18
# Overwrite the GSP data which is already in the datapipes dict
datapipes_dict["gsp"] = IterableWrapper([ds_fake_gsp])
# Use create_t0_datapipe to get datapipe of init-times
t0_datapipe = create_t0_datapipe(
datapipes_dict,
configuration=config,
shuffle=False,
)
# Create a full list of available init-times
available_init_times = pd.to_datetime([t0 for t0 in t0_datapipe])
logger.info(
f"{len(available_init_times)} out of {len(potential_init_times)} "
"requested init-times have required input data"
)
return available_init_times
def get_times_datapipe(config_path):
"""Create init-time datapipe
Args:
config_path: Path to data config file
Returns:
Datapipe: A Datapipe yielding init-times
"""
# Filter the init-times to times we have all input data for
available_target_times = get_available_t0_times(
start_datetime,
end_datetime,
config_path,
)
num_t0s = len(available_target_times)
# Save the init-times which predictions are being made for. This is really helpful to check
# whilst the backtest is running since it takes a long time. This lets you see what init-times
# the backtest will end up producing
available_target_times.to_frame().to_csv(f"{output_dir}/t0_times.csv")
# Create times datapipe so each worker receives 317 copies of the same datetime for its batch
t0_datapipe = IterableWrapper(available_target_times)
t0_datapipe = t0_datapipe.sharding_filter()
t0_datapipe = t0_datapipe.set_length(num_t0s)
return t0_datapipe
class ModelPipe:
"""A class to conveniently make and process predictions from batches"""
def __init__(self, model, summation_model, ds_gsp: xr.Dataset):
"""A class to conveniently make and process predictions from batches
Args:
model: PVNet GSP level model
summation_model: Summation model to make national forecast from GSP level forecasts
ds_gsp:xarray dataset of PVLive true values and capacities
"""
self.model = model
self.summation_model = summation_model
self.ds_gsp = ds_gsp
def predict_batch(self, batch: NumpyBatch) -> xr.Dataset:
"""Run the batch through the model and compile the predictions into an xarray DataArray
Args:
batch: A batch of samples with inputs for each GSP for the same init-time
Returns:
xarray.Dataset of all GSP and national forecasts for the batch
"""
# Unpack some variables from the batch
id0 = batch[BatchKey.gsp_t0_idx]
t0 = batch[BatchKey.gsp_time_utc].cpu().numpy().astype("datetime64[s]")[0, id0]
n_valid_times = len(batch[BatchKey.gsp_time_utc][0, id0 + 1 :])
ds_gsp = self.ds_gsp
model = self.model
summation_model = self.summation_model
# Get valid times for this forecast
valid_times = pd.to_datetime(
[t0 + np.timedelta64((i + 1) * FREQ_MINS, "m") for i in range(n_valid_times)]
)
# Get effective capacities for this forecast
gsp_capacities = ds_gsp.effective_capacity_mwp.sel(
time_utc=t0, gsp_id=slice(1, None)
).values
national_capacity = ds_gsp.effective_capacity_mwp.sel(time_utc=t0, gsp_id=0).item()
# Get the solar elevations. We need to un-normalise these from the values in the batch
elevation = batch[BatchKey.gsp_solar_elevation] * ELEVATION_STD + ELEVATION_MEAN
# We only need elevation mask for forecasted values, not history
elevation = elevation[:, id0 + 1 :]
# Make mask dataset for sundown
da_sundown_mask = xr.DataArray(
data=elevation < MIN_DAY_ELEVATION,
dims=["gsp_id", "target_datetime_utc"],
coords=dict(
gsp_id=ALL_GSP_IDS,
target_datetime_utc=valid_times,
),
)
with torch.no_grad():
# Run batch through model to get 0-1 predictions for all GSPs
device_batch = copy_batch_to_device(batch_to_tensor(batch), device)
y_normed_gsp = model(device_batch).detach().cpu().numpy()
da_normed_gsp = preds_to_dataarray(y_normed_gsp, model, valid_times, ALL_GSP_IDS)
# Multiply normalised forecasts by capacities and clip negatives
da_abs_gsp = da_normed_gsp.clip(0, None) * gsp_capacities[:, None, None]
# Apply sundown mask
da_abs_gsp = da_abs_gsp.where(~da_sundown_mask).fillna(0.0)
# Make national predictions using summation model
if summation_model is not None:
with torch.no_grad():
# Construct sample for the summation model
summation_inputs = {
"pvnet_outputs": torch.Tensor(y_normed_gsp[np.newaxis]).to(device),
"effective_capacity": (
torch.Tensor(gsp_capacities / national_capacity)
.to(device)
.unsqueeze(0)
.unsqueeze(-1)
),
}
# Run batch through the summation model
y_normed_national = (
summation_model(summation_inputs).detach().squeeze().cpu().numpy()
)
# Convert national predictions to DataArray
da_normed_national = preds_to_dataarray(
y_normed_national[np.newaxis], summation_model, valid_times, gsp_ids=[0]
)
# Multiply normalised forecasts by capacities and clip negatives
da_abs_national = da_normed_national.clip(0, None) * national_capacity
# Apply sundown mask - All GSPs must be masked to mask national
da_abs_national = da_abs_national.where(~da_sundown_mask.all(dim="gsp_id")).fillna(0.0)
# If no summation model, make national predictions using simple sum
else:
da_abs_national = (
da_abs_gsp.sum(dim="gsp_id")
.expand_dims(dim="gsp_id", axis=0)
.assign_coords(gsp_id=[0])
)
# Concat the regional GSP and national predictions
da_abs_all = xr.concat([da_abs_national, da_abs_gsp], dim="gsp_id")
ds_abs_all = da_abs_all.to_dataset(name="hindcast")
ds_abs_all = ds_abs_all.expand_dims(dim="init_time_utc", axis=0).assign_coords(
init_time_utc=[t0]
)
return ds_abs_all
def get_datapipe(config_path: str) -> NumpyBatch:
"""Construct datapipe yielding batches of concurrent samples for all GSPs
Args:
config_path: Path to the data configuration file
Returns:
NumpyBatch: Concurrent batch of samples for each GSP
"""
# Construct location and init-time datapipes
t0_datapipe = get_times_datapipe(config_path)
# Construct sample datapipes
data_pipeline = construct_sliced_data_pipeline(
config_path,
t0_datapipe,
)
# Convert to tensor for model
data_pipeline = data_pipeline.map(batch_to_tensor).set_length(len(t0_datapipe))
return data_pipeline
@hydra.main(config_path="../configs", config_name="config.yaml", version_base="1.2")
def main(config: DictConfig):
"""Runs the backtest"""
dataloader_kwargs = dict(
shuffle=False,
batch_size=None,
sampler=None,
batch_sampler=None,
# Number of workers set in the config file
num_workers=config.datamodule.num_workers,
collate_fn=None,
pin_memory=False,
drop_last=False,
timeout=0,
worker_init_fn=None,
prefetch_factor=config.datamodule.prefetch_factor,
persistent_workers=False,
)
# Set up output dir
os.makedirs(output_dir)
# Create concurrent batch datapipe
# Each batch includes a sample for each of the 317 GSPs for a single init-time
batch_pipe = get_datapipe(config.datamodule.configuration)
num_batches = len(batch_pipe)
# Load the GSP data as an xarray object
ds_gsp = get_gsp_ds(config.datamodule.configuration)
# Create a dataloader for the concurrent batches and use multiprocessing
dataloader = DataLoader(batch_pipe, **dataloader_kwargs)
# Load the PVNet model and summation model
model, *_ = get_model_from_checkpoints([model_chckpoint_dir], val_best=True)
model = model.eval().to(device)
if summation_chckpoint_dir is None:
summation_model = None
else:
summation_model, *_ = get_model_from_checkpoints([summation_chckpoint_dir], val_best=True)
summation_model = summation_model.eval().to(device)
# Create object to make predictions for each input batch
model_pipe = ModelPipe(model, summation_model, ds_gsp)
# Loop through the batches
pbar = tqdm(total=num_batches)
for i, batch in zip(range(num_batches), dataloader):
# Make predictions for the init-time
ds_abs_all = model_pipe.predict_batch(batch)
t0 = ds_abs_all.init_time_utc.values[0]
# Save the predictioons
filename = f"{output_dir}/{t0}.nc"
ds_abs_all.to_netcdf(filename)
pbar.update()
# Close down
pbar.close()
del dataloader
if __name__ == "__main__":
main()