diff --git a/pyproject.toml b/pyproject.toml index 8096fdd..10eefed 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,8 +11,9 @@ keywords = ["openai", "anthropic", "claude", "cohere", "llm monitoring", "observ [tool.poetry.dependencies] python = "^3.7.1" requests = "^2.26.0" -openai = "^1.13.0" +openai = "^1.1.0" anthropic = "^0.19.0" +mistralai = "^0.1.5" [build-system] requires = ["poetry-core>=1.1.0"] diff --git a/src/dokumetry/__init__.py b/src/dokumetry/__init__.py index 313c9c6..3688a58 100644 --- a/src/dokumetry/__init__.py +++ b/src/dokumetry/__init__.py @@ -66,16 +66,15 @@ def init(llm, doku_url, api_key, environment="default", application_name="defaul elif hasattr(llm, 'generate') and callable(llm.generate): init_cohere(llm, doku_url, api_key, environment, application_name, skip_resp) return - elif hasattr(llm, 'chat') and callable(llm.chat): - if isinstance(llm, MistralClient): - init_mistral(llm, doku_url, api_key, environment, application_name, skip_resp) - elif isinstance(llm, MistralAsyncClient): - init_async_mistral(llm, doku_url, api_key, environment, application_name, skip_resp) + elif isinstance(llm, MistralClient): + init_mistral(llm, doku_url, api_key, environment, application_name, skip_resp) return - elif hasattr(llm, 'messages') and callable(llm.messages.create): - if isinstance(llm, AsyncAnthropic): - init_async_anthropic(llm, doku_url, api_key, environment, application_name, skip_resp) - elif isinstance(llm, Anthropic): - init_anthropic(llm, doku_url, api_key, environment, application_name, skip_resp) - + elif isinstance(llm, MistralAsyncClient): + init_async_mistral(llm, doku_url, api_key, environment, application_name, skip_resp) + return + elif isinstance(llm, AsyncAnthropic): + init_async_anthropic(llm, doku_url, api_key, environment, application_name, skip_resp) + return + elif isinstance(llm, Anthropic): + init_anthropic(llm, doku_url, api_key, environment, application_name, skip_resp) return diff --git a/src/dokumetry/async_azure_openai.py b/src/dokumetry/async_azure_openai.py index 44189c3..da60719 100644 --- a/src/dokumetry/async_azure_openai.py +++ b/src/dokumetry/async_azure_openai.py @@ -194,8 +194,7 @@ async def stream_generator(): "response": accumulated_content, } - print(data) - #send_data(data, doku_url, api_key) + send_data(data, doku_url, api_key) return stream_generator() else: @@ -239,8 +238,7 @@ async def stream_generator(): data["promptTokens"] = response.usage.prompt_tokens data["totalTokens"] = response.usage.total_tokens - print(data) - #send_data(data, doku_url, api_key) + send_data(data, doku_url, api_key) return response diff --git a/src/dokumetry/azure_openai.py b/src/dokumetry/azure_openai.py index 9a1a314..2d5d07e 100644 --- a/src/dokumetry/azure_openai.py +++ b/src/dokumetry/azure_openai.py @@ -1,6 +1,6 @@ # pylint: disable=duplicate-code """ -Module for monitoring OpenAI API calls. +Module for monitoring Azure OpenAI API calls. """ import time @@ -11,10 +11,10 @@ # pylint: disable=too-many-statements def init(llm, doku_url, api_key, environment, application_name, skip_resp): """ - Initialize OpenAI monitoring for Doku. + Initialize Azure OpenAI monitoring for Doku. Args: - llm: The OpenAI function to be patched. + llm: The Azure OpenAI function to be patched. doku_url (str): Doku URL. api_key (str): Doku Authentication api_key. environment (str): Doku environment. @@ -29,14 +29,14 @@ def init(llm, doku_url, api_key, environment, application_name, skip_resp): def llm_chat_completions(*args, **kwargs): """ - Patched version of OpenAI's chat completions create method. + Patched version of Azure OpenAI's chat completions create method. Args: *args: Variable positional arguments. **kwargs: Variable keyword arguments. Returns: - OpenAIResponse: The response from OpenAI's chat completions create method. + OpenAIResponse: The response from Azure OpenAI's chat completions create method. """ is_streaming = kwargs.get('stream', False) start_time = time.time() @@ -154,14 +154,14 @@ def stream_generator(): def llm_completions(*args, **kwargs): """ - Patched version of OpenAI's completions create method. + Patched version of Azure OpenAI's completions create method. Args: *args: Variable positional arguments. **kwargs: Variable keyword arguments. Returns: - OpenAIResponse: The response from OpenAI's completions create method. + OpenAIResponse: The response from Azure OpenAI's completions create method. """ start_time = time.time() streaming = kwargs.get('stream', False) @@ -194,8 +194,7 @@ def stream_generator(): "response": accumulated_content, } - print(data) - #send_data(data, doku_url, api_key) + send_data(data, doku_url, api_key) return stream_generator() else: @@ -239,21 +238,20 @@ def stream_generator(): data["promptTokens"] = response.usage.prompt_tokens data["totalTokens"] = response.usage.total_tokens - print(data) - #send_data(data, doku_url, api_key) + send_data(data, doku_url, api_key) return response def patched_embeddings_create(*args, **kwargs): """ - Patched version of OpenAI's embeddings create method. + Patched version of Azure OpenAI's embeddings create method. Args: *args: Variable positional arguments. **kwargs: Variable keyword arguments. Returns: - OpenAIResponse: The response from OpenAI's embeddings create method. + OpenAIResponse: The response from Azure OpenAI's embeddings create method. """ start_time = time.time() @@ -282,14 +280,14 @@ def patched_embeddings_create(*args, **kwargs): def patched_image_create(*args, **kwargs): """ - Patched version of OpenAI's images generate method. + Patched version of Azure OpenAI's images generate method. Args: *args: Variable positional arguments. **kwargs: Variable keyword arguments. Returns: - OpenAIResponse: The response from OpenAI's images generate method. + OpenAIResponse: The response from Azure OpenAI's images generate method. """ start_time = time.time() diff --git a/tests/test_azure.py.hold b/tests/test_azure.py.hold new file mode 100644 index 0000000..bd2e21c --- /dev/null +++ b/tests/test_azure.py.hold @@ -0,0 +1,99 @@ +""" +Azure OpenAI Test Suite + +This module contains a suite of tests for OpenAI functionality using the OpenAI Python library. +It includes tests for various OpenAI API endpoints such as completions, chat completions, +embeddings creation, fine-tuning job creation, image generation, image variation creation, +and audio speech generation. + +The tests are designed to cover different aspects of OpenAI's capabilities and serve as a +validation mechanism for the integration with the Doku monitoring system. + +Global client and initialization are set up for the OpenAI client and Doku monitoring. + +Environment Variables: + - AZURE_OPENAI_API_TOKEN: OpenAI API key for authentication. + - DOKU_URL: Doku URL for monitoring data submission. + - DOKU_TOKEN: Doku authentication api_key. + +Note: Ensure the environment variables are properly set before running the tests. +""" + +import os +from openai import AzureOpenAI +import dokumetry + +# Global client +client = AzureOpenAI( + api_key=os.getenv("AZURE_OPENAI_API_TOKEN"), + api_version = "2024-02-01", + azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") +) + +azure_chat_model = os.getenv("AZURE_OPENAI_CHAT_MODEL") +azure_embedding_model = os.getenv("AZURE_OPENAI_EMBEDDING_MODEL") +azure_image_model = os.getenv("AZURE_OPENAI_IMAGE_MODEL") + +# Global initialization +# pylint: disable=line-too-long +dokumetry.init(llm=client, doku_url=os.getenv("DOKU_URL"), api_key=os.getenv("DOKU_TOKEN"), environment="dokumetry-testing", application_name="dokumetry-python-test", skip_resp=False) + +def test_completion(): + """ + Test the completions. + + Raises: + AssertionError: If the completion response object is not as expected. + """ + + completions_resp = client.completions.create( + model=azure_chat_model, + prompt="Hello world", + max_tokens=100 + ) + assert completions_resp.object == 'text_completion' + +def test_chat_completion(): + """ + Test chat completions. + + Raises: + AssertionError: If the chat completion response object is not as expected. + """ + + chat_completions_resp = client.chat.completions.create( + model=azure_chat_model, + max_tokens=100, + messages=[{"role": "user", "content": "What is Grafana?"}] + ) + assert chat_completions_resp.object == 'chat.completion' + +def test_embedding_creation(): + """ + Test embedding creation. + + Raises: + AssertionError: If the embedding response object is not as expected. + """ + + embeddings_resp = client.embeddings.create( + model=azure_embedding_model, + input="The quick brown fox jumped over the lazy dog", + encoding_format="float" + ) + assert embeddings_resp.data[0].object == 'embedding' + +def test_image_generation(): + """ + Test image generation. + + Raises: + AssertionError: If the image generation response created timestamp is not present. + """ + + image_generation_resp = client.images.generate( + model=azure_chat_model, + prompt='Generate an image for LLM Observability Dashboard', + n=1 + ) + assert image_generation_resp.created is not None