-
Notifications
You must be signed in to change notification settings - Fork 3
/
conv_filter_visualization.py
247 lines (208 loc) · 9.47 KB
/
conv_filter_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
#Visualization of the filters of VGG16, via gradient ascent in input space.
This script can run on CPU in a few minutes.
Results example: ![Visualization](http://i.imgur.com/4nj4KjN.jpg)
Adapted from: https://github.com/keras-team/keras/blob/master/examples/conv_filter_visualization.py
"""
from __future__ import print_function
import time
import numpy as np
from PIL import Image as pil_image
from keras.preprocessing.image import save_img
from keras import layers
from keras import backend as K
from keras.models import load_model
from constants import get_model_save_path
def normalize(x):
"""utility function to normalize a tensor.
# Arguments
x: An input tensor.
# Returns
The normalized input tensor.
"""
return x / (K.sqrt(K.mean(K.square(x))) + K.epsilon())
def deprocess_image(x):
"""utility function to convert a float array into a valid uint8 image.
# Arguments
x: A numpy-array representing the generated image.
# Returns
A processed numpy-array, which could be used in e.g. imshow.
"""
# normalize tensor: center on 0., ensure std is 0.25
x -= x.mean()
x /= (x.std() + K.epsilon())
x *= 0.25
# clip to [0, 1]
x += 0.5
x = np.clip(x, 0, 1)
# convert to RGB array
x *= 255
if K.image_data_format() == 'channels_first':
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
def process_image(x, former):
"""utility function to convert a valid uint8 image back into a float array.
Reverses `deprocess_image`.
# Arguments
x: A numpy-array, which could be used in e.g. imshow.
former: The former numpy-array.
Need to determine the former mean and variance.
# Returns
A processed numpy-array representing the generated image.
"""
if K.image_data_format() == 'channels_first':
x = x.transpose((2, 0, 1))
return (x / 255 - 0.5) * 4 * former.std() + former.mean()
def visualize_layer(model,
layer_name,
step=1.,
epochs=15,
upscaling_steps=9,
upscaling_factor=1.2,
output_dim=(412, 412),
filter_range=(0, None)):
"""Visualizes the most relevant filters of one conv-layer in a certain model.
# Arguments
model: The model containing layer_name.
layer_name: The name of the layer to be visualized.
Has to be a part of model.
step: step size for gradient ascent.
epochs: Number of iterations for gradient ascent.
upscaling_steps: Number of upscaling steps.
Starting image is in this case (80, 80).
upscaling_factor: Factor to which to slowly upgrade
the image towards output_dim.
output_dim: [img_width, img_height] The output image dimensions.
filter_range: Tupel[lower, upper]
Determines the to be computed filter numbers.
If the second value is `None`,
the last filter will be inferred as the upper boundary.
"""
def _generate_filter_image(input_img,
layer_output,
filter_index):
"""Generates image for one particular filter.
# Arguments
input_img: The input-image Tensor.
layer_output: The output-image Tensor.
filter_index: The to be processed filter number.
Assumed to be valid.
#Returns
Either None if no image could be generated.
or a tuple of the image (array) itself and the last loss.
"""
s_time = time.time()
# we build a loss function that maximizes the activation
# of the nth filter of the layer considered
if K.image_data_format() == 'channels_first':
loss = K.mean(layer_output[:, filter_index, :, :])
else:
loss = K.mean(layer_output[:, :, :, filter_index])
# we compute the gradient of the input picture wrt this loss
grads = K.gradients(loss, input_img)[0]
# normalization trick: we normalize the gradient
grads = normalize(grads)
# this function returns the loss and grads given the input picture
iterate = K.function([input_img], [loss, grads])
# we start from a gray image with some random noise
intermediate_dim = tuple(
int(x / (upscaling_factor ** upscaling_steps)) for x in output_dim)
if K.image_data_format() == 'channels_first':
input_img_data = np.random.random(
(1, 3, intermediate_dim[0], intermediate_dim[1]))
else:
input_img_data = np.random.random(
(1, intermediate_dim[0], intermediate_dim[1], 3))
input_img_data = (input_img_data - 0.5) * 20 + 128
# Slowly upscaling towards the original size prevents
# a dominating high-frequency of the to visualized structure
# as it would occur if we directly compute the 412d-image.
# Behaves as a better starting point for each following dimension
# and therefore avoids poor local minima.
for up in reversed(range(upscaling_steps)):
# we run gradient ascent for e.g. 20 steps
for _ in range(epochs):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step
# some filters get stuck to 0, we can skip them
if loss_value <= K.epsilon():
return None
# Calculate upscaled dimension
intermediate_dim = tuple(
int(x / (upscaling_factor ** up)) for x in output_dim)
# Upscale
img = deprocess_image(input_img_data[0])
img = np.array(pil_image.fromarray(img).resize(intermediate_dim,
pil_image.BICUBIC))
input_img_data = [process_image(img, input_img_data[0])]
# decode the resulting input image
img = deprocess_image(input_img_data[0])
e_time = time.time()
print('Costs of filter {:3}: {:5.0f} ( {:4.2f}s )'.format(filter_index,
loss_value,
e_time - s_time))
return img, loss_value
def _draw_filters(filters, n=None):
"""Draw the best filters in a nxn grid.
# Arguments
filters: A List of generated images and their corresponding losses
for each processed filter.
n: dimension of the grid.
If none, the largest possible square will be used
"""
if n is None:
n = int(np.floor(np.sqrt(len(filters))))
# the filters that have the highest loss are assumed to be better-looking.
# we will only keep the top n*n filters.
filters.sort(key=lambda x: x[1], reverse=True)
filters = filters[:n * n]
# build a black picture with enough space for
# e.g. our 8 x 8 filters of size 412 x 412, with a 5px margin in between
MARGIN = 5
width = n * output_dim[0] + (n - 1) * MARGIN
height = n * output_dim[1] + (n - 1) * MARGIN
stitched_filters = np.zeros((width, height, 3), dtype='uint8')
# fill the picture with our saved filters
for i in range(n):
for j in range(n):
img, _ = filters[i * n + j]
width_margin = (output_dim[0] + MARGIN) * i
height_margin = (output_dim[1] + MARGIN) * j
stitched_filters[
width_margin: width_margin + output_dim[0],
height_margin: height_margin + output_dim[1], :] = img
# save the result to disk
save_img('pictures/filters/{0:}_{1:}x{1:}.png'.format(layer_name, n), stitched_filters)
# this is the placeholder for the input images
assert len(model.inputs) == 1
input_img = model.inputs[0]
# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])
output_layer = layer_dict[layer_name]
assert isinstance(output_layer, layers.Conv2D)
# Compute to be processed filter range
filter_lower = filter_range[0]
filter_upper = (filter_range[1]
if filter_range[1] is not None
else len(output_layer.get_weights()[1]))
assert(filter_lower >= 0
and filter_upper <= len(output_layer.get_weights()[1])
and filter_upper > filter_lower)
print('Compute filters {:} to {:}'.format(filter_lower, filter_upper))
# iterate through each filter and generate its corresponding image
processed_filters = []
for f in range(filter_lower, filter_upper):
img_loss = _generate_filter_image(input_img, output_layer.output, f)
if img_loss is not None:
processed_filters.append(img_loss)
print('{} filter processed.'.format(len(processed_filters)))
# Finally draw and store the best filters to disk
_draw_filters(processed_filters)
if __name__ == '__main__':
# the name of the layer we want to visualize
LAYER_NAME = 'conv2d_2' # from '_1' to '_13' and possibly 'up_sampling2d_1' and '_2'
model = load_model(get_model_save_path())
model.summary()
# example function call
visualize_layer(model, LAYER_NAME)