forked from sinzlab/essential-mathematics-script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter_3.2.lyx
263 lines (210 loc) · 4.99 KB
/
chapter_3.2.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\setcounter{chapter}{3}
\usepackage{graphicx}
\usepackage{pict2e}
\usepackage{graphpap}
\usepackage{color}
\usepackage{bm}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Fourier Series and Complex Numbers
\end_layout
\begin_layout Standard
Fourier Analysis is usually taught using complex numbers rather than sines
and cosines.
While this has the disadvantage of requiring at least some familiarity
of complex numbers, it makes notation much simpler, and is also conceptually
more elegant.
Furthermore, you will have to understand the complex-number notation in
order to understand most references about Fourier Series.
Therefore, we will quickly sketch the derivation of Fourier Series with
complex numbers.
Furthermore, this will set the stage for the Fourier Transform in the next
section.
\end_layout
\begin_layout Itemize
A complex number
\begin_inset Formula $z$
\end_inset
consists of a real part and an imaginary part:
\begin_inset Formula
\[
z=a+bi,\mbox{ where }i=\sqrt{-1}.
\]
\end_inset
\end_layout
\begin_layout Itemize
Any complex number
\begin_inset Formula $z$
\end_inset
can also be written in its
\emph on
polar
\emph default
form
\emph on
\begin_inset Formula $z=Ae^{i\theta}$
\end_inset
,
\emph default
where
\begin_inset Formula $A$
\end_inset
is the modulus of
\begin_inset Formula $z$
\end_inset
, and
\begin_inset Formula $\theta$
\end_inset
is the argument of
\begin_inset Formula $z$
\end_inset
.
\end_layout
\begin_layout Itemize
We can convert from the Cartesian form to the polar form by
\begin_inset Formula $A=\sqrt{a^{2}+b^{2}},$
\end_inset
\begin_inset Formula $\theta=\tan^{-1}(\frac{b}{a}),$
\end_inset
and from polar to Cartesian by
\begin_inset Formula $a=A\sin(\theta),$
\end_inset
\begin_inset Formula $b=A\cos(\theta).$
\end_inset
\end_layout
\begin_layout Itemize
In other words, any complex number
\begin_inset Formula $z$
\end_inset
can be written as
\begin_inset Formula $z=Ae^{i\theta}=A(cos\theta+i\sin\theta).$
\end_inset
This will allow us to collapse the sines and cosines into complex numbers.
\end_layout
\begin_layout Standard
The Fourier Series approximation of
\begin_inset Formula $f(x)$
\end_inset
of order
\begin_inset Formula $N$
\end_inset
in complex number notation is
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
f_{N}(x)=\sum_{k=-N}^{N}c_{k}e^{ikx}.
\]
\end_inset
To find each coefficient
\begin_inset Formula $c_{m},$
\end_inset
we need to make use of the integration identity
\begin_inset Formula
\[
\int_{-\pi}^{\pi}e^{ix(k-m)}dx=\begin{cases}
2\pi & \mbox{for }k=m\\
0 & \mbox{for }k\neq m.
\end{cases}
\]
\end_inset
\end_layout
\begin_layout Standard
We only need
\emph on
one
\emph default
such identity when we are using complex numbers, rather than several ones.
Furthermore, this identity can quickly be derived by using the basic integratio
n rule
\begin_inset Formula $\int e^{ax}dx=\frac{1}{a}e^{ax}.$
\end_inset
Hence, each coefficient
\begin_inset Formula $c_{m}$
\end_inset
is found by
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
\int_{-\pi}^{\pi}f(x)e^{-ixm}dx & = & \int_{-\pi}^{\pi}\left(\sum_{k=-\infty}^{\infty}c_{k}e^{ikx}\right)e^{-ixm}\\
& = & \sum_{k=-\infty,k\neq m}^{\infty}\int_{-\pi}^{\pi}c_{k}e^{ix(k-m)}dx+\int_{-\pi}^{\pi}c_{m}e^{ix(m-m)}dx\\
& = & 0+2\pi c_{m}\\
\implies c_{m} & = & \frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-ixm}dx.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
It should be noted that, while each coefficient
\begin_inset Formula $c_{m}$
\end_inset
could be an imaginary number, the Fourier approximation
\begin_inset Formula $f_{N}(x)$
\end_inset
is actually a real-valued function, as the imaginary parts of its components
magically cancel out.
\end_layout
\begin_layout Standard
\end_layout
\end_body
\end_document