-
Notifications
You must be signed in to change notification settings - Fork 1
/
foundations.tex
854 lines (760 loc) · 27.2 KB
/
foundations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
%\newcommand{\emptysmodel}[0]{$\textbf{\LARGE{X}}$}
%\usetikzlibrary {positioning}
%\newcommand{\setsets}[1]{\boldsymbol{#1}}
%\newcommand{\App}[1]{\ensuremath{A_{#1}}}
%\newcommand{\A}[2]{\App{#1}#2}
%\newcommand{\fixp}[1]{#1^{\star}}
%\newcommand{\Appfixp}[1]{\ensuremath{\fixp{A_{#1}}}}
%\newcommand{\Afixp}[2]{\Appfixp{#1}#2}
%\newcommand{\Appi}[2]{\ensuremath{A_{#1}^{#2}}}
%\newcommand{\Ai}[3]{\Appi{#1}{#2}#3}
%\newcommand{\myinput}[1]{
%\ifx\inlibrary\undefined
% \input{#1}
%\else
% \input{../#1}
%\fi
%}
\newcommand{\xtodo}[0]{
\begin{tikzpicture}[remember picture,overlay]
\node[draw, very thick, rounded corners, xshift=-1.3cm,yshift=-2cm] at (current page.north east)
{TO DO};
\end{tikzpicture}
}
%%%\tikzset{%
%%% examples/.style={%
%%%%, >={Stealth[round]}
%%%%->
%%%, x=1.5cm
%%%, y=-1.5cm
%%%, smodel/.style={rectangle,minimum size=0.5cm,draw,thin, rounded corners, ellipse}
%%%%, empty/.style={minimum size=7mm}
%%%, arrow/.style={<-,thin}
%%%%, empty_arrow/.style={arrow,dotted,draw=none} % dashed
%%%, rule/.style={align=center}
%%%, rule_dep/.style={align=center, draw}
%%%, rule_arrow/.style={<-}
%%%, rule_arrow_neg/.style={rule_arrow, dashed}
%%%, clingo/.style={font=\small\ttfamily,draw,align=left}
%%%, clingo_rule/.style={font=\small\ttfamily,align=left}
%%% },
%%% note/.style={draw,rounded corners, very thick, fill=blue!50!black}
%%%}
%%%\begin{tikzpicture}[remember picture,overlay]
%%%\node[note]
%%% at (8.57,2.25) % CHANGE THIS
%%% {{\begin{varwidth}{90pt}
%%% ... % CHANGE THIS
%%% \end{varwidth}}
%%%};
%%%%\draw[step=1,help lines] (0,0) grid (10,10);
%%%\end{tikzpicture}
% ----------------------------------------------------------------------
\section{Motivation}
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
\begin{frame}{Motivation}
\begin{itemize}
\vfill
\item<1->\alert<1>{Goals}:
\begin{itemize}
\item Teach Answer Set Programming (ASP)
\item Develop a methodology for ASP
\end{itemize}
\bigskip
\bigskip
\item<2->There is a \alert<2>{gap} between
\begin{itemize}
\item Stable model semantics for \alert<2>{logic} programs
\item Answer Set \alert<2>{Programming}
\end{itemize}
\vfill
\end{itemize}
\end{frame}
% ----------------------------------------------------------------------
\begin{frame}{Both sides}
\begin{itemize}
\item<1-> \alert<1>{Stable model semantics} for logic programs
\begin{itemize}
\item Very general syntax (e.g., negation, disjunction, aggregates)
\item \alert<1>{Formal semantics} using reduct (or HT-logic)
\item Translational semantics for some constructs (e.g., choices)
\item Not constructive, pre-grounding
\end{itemize}
Great in theory: general, elegant, concise\ldots
\bigskip\bigskip
\item<2-> \alert<2>{Answer Set Programming} \only<3>{\alert<3>{(often)}}
\begin{itemize}
\item Restricted syntax (limited recursion, no disjunction)
\item \alert<2>{Informal semantics} using examples
\item Direct interpretation of constructs (e.g., choices and constraints)
\item Constructive (grounding as needed)
\end{itemize}
Great in practice: easy modeling language with effective solvers
\end{itemize}
\end{frame}
% ----------------------------------------------------------------------
\begin{frame}{The gap}
\begin{itemize}
\item<1-> The explanations about Answer Set Programming are
only indirectly linked to the formal semantics:
\alert<1>{where is the reduct?}
\bigskip
\item<2-> How do \alert<2>{the experts} bridge the gap?
\begin{itemize}
\item Programming methodology: restricted syntax, and rules in order
\item Non-recursive negation: simplified using the Splitting Set Theorem
\item Positive rules: iterate over $\T{P}$
\item Choice rules and constraints: direct interpretation
\end{itemize}
\bigskip
\item<3-> \alert<3>{This talk:}
Tutorial + formal semantics for Answer Set Programming
\begin{itemize}
\item Those features are made explicit in the semantics
\item Easy and constructive (grounding as needed)
\item Graphical interpretation
\end{itemize}
\end{itemize}
\end{frame}
% ----------------------------------------------------------------------
\section{Examples}
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
\begin{frame}{Example}
$
P
=
\left\{
\only<1>{\{ p \} \leftarrow,}\only<2->{q \leftarrow p,} \
\only<1>{q \leftarrow p,}\only<2>{\{ p \} \leftarrow,}\only<3->{\phantom{q} \leftarrow \naf{q},} \
\only<1-2>{\phantom{q} \leftarrow \naf{q}}\only<3->{\{ p \} \leftarrow}
\right\}
$
\bigskip
\begin{center}
\begin{tikzpicture}
[
examples
]
% line 0
\uncover<4->{
\alert<4>{
\node[smodel] (node01) at ( 1, 0) {};
}
}
% line 1
\uncover<5->{
\alert<5>{
\node[smodel] (node11) at ( 0,1) {}
edge [arrow] (node01);
\node[smodel] (node12) at ( 2,1) {$p$}
edge [arrow] (node01);
}
}
\only<1-7>{
\alert<5>{
\node[rule] at (3.5,1) {$\{p\} \leftarrow$};
}
}
\node[rule_dep] (rule1) at (5.5,1) {$\{p\} \leftarrow$};
\visible<8>{
\draw (2.75,0.75) node[anchor=south west,align=right] {\texttt{example.lp}} rectangle (4.25,3.25) ;
\node[clingo_rule] at (3.5,1) {\{p\}.};
}
% line 2
\uncover<6->{
\alert<6>{
\node[smodel] (node21) at ( 0,2) {}
edge [arrow] (node11);
\node[smodel] (node22) at ( 2,2) {$p$ $q$}
edge [arrow] (node12);
}
}
\only<1-7>{
\alert<6>{
\node[rule] at (3.5,2) {$q \leftarrow p$};
}
}
\node[rule_dep] (rule2) at (5.5,2) {$q \leftarrow p$}
edge [rule_arrow] (rule1);
\only<8>{
\node[clingo_rule] at (3.5,2) {q :- p.};
}
% line 3
%\node[empty] (node31) at ( 0,3) {\emptysmodel}
% edge [empty_arrow] (node21);
\uncover<7->{
\alert<7>{
\node[smodel] (node32) at ( 2,3) {$p$ $q$}
edge [arrow] (node22);
}
}
\only<1-7>{
\alert<7>{
\node[rule] at (3.5,3) {$\phantom{q} \leftarrow \naf{q}$};
}
}
\node[rule_dep] (rule3) at (5.5,3) {$\phantom{q} \leftarrow \naf{q}$}
edge [rule_arrow_neg] (rule2);
\only<8>{
\node[clingo_rule] at (3.5,3) {:- not q.};
}
%\draw [help lines] (0,0) grid (5,5);
\end{tikzpicture}
\end{center}
\end{frame}
% ----------------------------------------------------------------------
\begin{frame}[label=newexamplelong]{Example}
$
P
=
\left\{
\{ p \} \leftarrow, \ \
q \leftarrow p, \ \
\{ r \} \leftarrow \naf{p}, \ \
s \leftarrow \naf{q}, \naf{r}, \ \
\phantom{s} \leftarrow r, \naf{p}
\right\}
$
\bigskip
\begin{center}
\begin{tikzpicture}
[
examples
, x=1cm
, y=-1cm
, every node/.style={node distance=1cm and 1cm, on grid}
, rule_dep/.style={align=center, draw}
, rule_arrow/.style={<-}
, rule_arrow_neg/.style={rule_arrow, dashed}
]
%
% dependency graph
%
\node[rule_dep] (rule1) at (8.5,1.5) {$\{p\} \leftarrow$};
\node[rule_dep, below left=of rule1, xshift=-1.5mm] (rule21) {$q \leftarrow p$}
edge [rule_arrow] (rule1);
\node[rule_dep, below right=of rule1, xshift=1.5mm] (rule22) {$\{r\} \leftarrow \naf{p}$}
edge [rule_arrow_neg] (rule1);
\node[rule_dep, below=of rule21] (rule31) {$s \leftarrow \naf{q}, \naf{r}$}
edge [rule_arrow_neg] (rule21);
\draw [rule_arrow_neg, shorten <= 0.1mm] (rule31.north east) -- (rule22.south);
\node[rule_dep, below=of rule22] (rule32) {$\phantom{s} \leftarrow r, \naf{p}$}
edge [rule_arrow] (rule22);
\draw [rule_arrow_neg, ->, rounded corners] (rule1.east) -- ++ (1.85,0) -- ++ (0,2) -- (rule32.east);
%\draw [help lines] (0,0) grid (-5,5);
%
% rule sequence
%
\node[rule] (rule_seq_1) at (4.25,1) {$\{p\} \leftarrow$};
\alt<7->{
\node[rule, below=of rule_seq_1] (rule_seq_2) {$\{r\} \leftarrow \naf{p}$};
\node[rule, below=of rule_seq_2] (rule_seq_3) {$\phantom{s} \leftarrow r, \naf{p}$};
\node[rule, below=of rule_seq_3] (rule_seq_4) {$q \leftarrow p$};
\node[rule, below=of rule_seq_4] (rule_seq_5) {$s \leftarrow \naf{q}, \naf{r}$};
}{
\node[rule, below=of rule_seq_1] (rule_seq_2) {$q \leftarrow p$};
\node[rule, below=of rule_seq_2] (rule_seq_3) {$\{r\} \leftarrow \naf{p}$};
\node[rule, below=of rule_seq_3] (rule_seq_4) {$s \leftarrow \naf{q}, \naf{r}$};
\node[rule, below=of rule_seq_4] (rule_seq_5) {$\phantom{s} \leftarrow r, \naf{p}$};
}
%
% smodels
%
% line 0
\node[smodel] (node01) at ( 1, 0) {};
% line 1
\uncover<2-6,8->{
\node[smodel, below left=of node01] (node11) {}
edge [arrow] (node01);
\node[smodel, below right=of node01] (node12) {$p$}
edge [arrow] (node01);
}
\alt<7->{
% line 2
\uncover<9->{
\node[smodel, below left=of node11, xshift=4mm] (node21) {}
edge [arrow] (node11);
\node[smodel, below right=of node11, xshift=-4mm] (node22) {$r$}
edge [arrow] (node11);
\node[smodel, below=of node12] (node23) {$p$}
edge [arrow] (node12);
}
% line 3
\uncover<10->{
\node[smodel, below=of node21] (node31) {}
edge [arrow] (node21);
\node[smodel, below=of node23] (node32) {$p$}
edge [arrow] (node23);
}
% line 4
\uncover<11->{
\node[smodel, below=of node31] (node41) {}
edge [arrow] (node31);
\node[smodel, below=of node32] (node42) {$p$ $q$}
edge [arrow] (node32);
}
% line 5
\uncover<12->{
\node[smodel, below=of node41] (node51) {$s$}
edge [arrow] (node41);
\node[smodel, below=of node42] (node52) {$p$ $q$}
edge [arrow] (node42);
}
}{
% line 2
\uncover<3->{
\node[smodel, below=of node11] (node21) {}
edge [arrow] (node11);
\node[smodel, below=of node12] (node22) {$p$ $q$}
edge [arrow] (node12);
}
% line 3
\uncover<4->{
\node[smodel, below left=of node21, xshift=4mm] (node31) {}
edge [arrow] (node21);
\node[smodel, below right=of node21, xshift=-4mm] (node32) {$r$}
edge [arrow] (node21);
\node[smodel, below=of node22] (node33) {$p$ $q$}
edge [arrow] (node22);
}
% line 4
\uncover<5->{
\node[smodel, below=of node31] (node41) {$s$}
edge [arrow] (node31);
\node[smodel, below=of node32] (node42) {$r$}
edge [arrow] (node32);
\node[smodel, below=of node33] (node43) {$p$ $q$}
edge [arrow] (node33);
}
% line 5
\uncover<6->{
\node[smodel, below=of node41] (node51) {$s$}
edge [arrow] (node41);
%\node[smodel] (node42) at ( 1,4) {$r$}
% edge [arrow] (node32);
\node[smodel, below=of node43] (node53) {$p$ $q$}
edge [arrow] (node43);
}
}
\end{tikzpicture}
\end{center}
\end{frame}
% ----------------------------------------------------------------------
% \input{recursion_hard}
% \input{recursion}
\begin{frame}{Recursion examples\ldots}
\end{frame}
% ----------------------------------------------------------------------
\section{Theory}
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
\begin{frame}<1-4>[label=programsframe]{\only<1>{Normal logic programs}%
\only<2->{\alert<2-4>{Extended} logic programs}}%\only<6->{ \alert<6->{with variables}}}
\label{eqn:rule}
\begin{itemize}
\item %<1->
\alt<6>{
A \alert{logic program}, $P$, over a set $\mathcal{A}$ of \alert{atoms with variables}
is a finite set of \alert{safe} rules, i.e., the variables of every rule $r$ must occur in \pbody{r}
}{
A \alert<1>{logic program}, $P$, over a set $\mathcal{A}$ of atoms is a finite \alert<1>{set} of rules
}
% \only<6>{\item Every rule $r$ must be \alert{safe}, i.e., each of its variables also occurs in \pbody{r}}
\item %<1->
A \only<1>{(normal)}\alert<2-4>{\only<2>{normal}\only<3>{choice}\only<4->{constraint}} \alert<1-4>{rule}, $r$, is of the form
\[
% \alt<2>{\tt a_0\texttt{ :- } a_1,\dots,a_m,\texttt{ not }{a_{m+1}},\dots,\texttt{ not }{a_n}.}%
{\only<1-2>{a_0}\only<3>{\{a_0\}}\only<4->{\phantom{\{a_0\}}} \leftarrow a_1,\dots,a_m, \naf{a_{m+1}},\dots, \naf{a_n}}
\]
where $0\leq m\leq n$ and each $a_i\in{\mathcal{A}}$ is an atom for $\alt<4->{1}{0}\leq i\leq n$
\item %<3->
\structure{Notation}
\begin{align*}
\head{r}\phantom{^+} &=\, \only<1-3>{a_0}\only<4->{{\{\}}}
\\
\body{r}\phantom{^+} &=\, \{a_1,\dots,a_m,\naf{a_{m+1}},\dots,\naf{a_n}\}
\\
\pbody{r} &=\, \{a_1,\dots,a_m\}
\\
\nbody{r} &=\, \{a_{m+1},\dots,a_n\}
% \only<4>{%
% \\
% \atom{P}\phantom{^+} &=\, \textstyle\bigcup_{r\in P}\left(\{\head{r}\}\cup\pbody{r}\cup\nbody{r}\right)
% \\
% \body{P}\phantom{^+} &=\, \{\body{r}\mid r\in P\}
% \\
% \head{P}\phantom{^+} & =\, \{\head{r}\mid r\in P\}}
\end{align*}%
\item %<4->
A \alert<1>{literal} is an atom or a negated atom
\item %<5->
A program $P$ is \alert<1>{positive} if $\nbody{r}=\emptyset$ for all $r\in P$
\end{itemize}
\only<0>{
\begin{tikzpicture}[remember picture,overlay]
%\node[note]
% at (5.85,7.2) % CHANGE THIS
% {{\begin{varwidth}{100pt}
% over a set $\mathcal{A}$ of atoms \par \alert{with variables} % CHANGE THIS
% \end{varwidth}}
%};
\node[note]
at (2,6) % CHANGE THIS
{{\begin{varwidth}{150pt}
\begin{itemize}
\item
A logic program, $P$, over a set $\mathcal{A}$ of atoms \alert{with variables} is a finite set of rules
\end{itemize}
\end{varwidth}}
};
%\draw[step=1,help lines] (0,0) grid (10,10);
\end{tikzpicture}
%%%\begin{tikzpicture}[remember picture,overlay]
%%%%\draw[step=1,help lines] (0,0) grid (10,10);
%%%\node % [draw, rounded corners, very thick]
%%% at (7.77,6.4) {\alert{with variables}};
%%%\draw[rounded corners, very thick]
%%% (6.6,7.2) -- (7.72,7.2) -- (7.72,6.65) -- (9,6.65)
%%% -- (9,6.1) -- (6.6,6.1) -- cycle;
%%%\end{tikzpicture}
}
\end{frame}
%\renewcommand{\head}[1]{\ensuremath{\mathit{h}(#1)}}
%\renewcommand{\body}[1]{\ensuremath{\mathit{b}(#1)}}
\newcommand{\headphantom}[1]{\ensuremath{\phantom{\mathit{head}(}#1\phantom{)}}}
% ----------------------------------------------------------------------
\begin{frame}<1-8>[label=operatorframe]{Application operator}
\begin{itemize}
\item A set of atoms $X$ \alert<1>{satisfies} a set of literals
\mbox{\small$\{a_1,\dots,a_m,\naf{a_{m+1}},\dots,\naf{a_n}\}$} if
\mbox{\small$\{a_1, \dots, a_m\} \subseteq X$} and
\mbox{\small$\{a_{m+1},\dots,a_n\} \cap X = \emptyset$}.
\medskip
\item<2-> Let $P$ be a set of \alert<2-8>{\only<1-4>{normal}\only<5-6>{choice}\only<7->{constraint}}
rules and $\setsets{X}$ a set of sets of atoms,\par
the \alert<2-8>{application operator} $\App{P}$ is defined as follows:
\smallskip
\mbox{\small$
\A{P}{\setsets{X}} = \big\{
\only<1-6>{X \cup Y}\only<7->{\alert<5>{\hspace{9.5pt}X \hspace{10pt}}}\mid X \in \setsets{X}, %
\only<1-6>{Y}\only<7->{\ \alert<7>{\emptyset}} \only<1-4,7->{\alert{=}}\only<5-6>{\alert{\subseteq}} %
\alt<3>{
\underbrace{
\{ \only<1-6>{\head{r}}\only<7->{\hspace{14.5pt} \alert<7-8>{r} \hspace{14pt}} \mid r\in P\text{ and }%
X \text{ satisfies } \body{r} \}
}_{\T{P}{X}\text{ if }P\text{ is positive}}
}{
\{ \only<1-6>{\head{r}}\only<7->{\hspace{14.5pt} \alert<7-8>{r} \hspace{14pt}} \mid r\in P\text{ and }%
X \text{ satisfies } \body{r} \}
}
\big\}
$}
\bigskip
% \item \structure{Example:}
\only<10->{
\item For $n \geq 1$, let \alert<10>{$\Ai{P}{n}{\setsets{X}}$} be $\A{P}{\setsets{X}}$
if $n=1$ and $\A{P}{\Ai{P}{n-1}{\setsets{X}}}$ if $n > 1$.\par
E.g., $\Ai{P}{2}{\setsets{X}}$ is $\A{P}{\A{P}{\setsets{X}}}$,
and $\Ai{P}{3}{\setsets{X}}$ is $\A{P}{\A{P}{\A{P}{\setsets{X}}}}$.
}\only<11->{
\pause
\item Let \alert<11>{$\Afixp{P}{\setsets{X}}$} be $\Ai{P}{n}{\setsets{X}}$ where $n$ is the smallest integer such that
$\Ai{P}{n}{\setsets{X}}=\Ai{P}{n+1}{\setsets{X}}$.
}
\end{itemize}
\only<13>{
\begin{tikzpicture}[remember picture,overlay]
\node[note]
at (8.57,2.55) % CHANGE THIS
{{\begin{varwidth}{90pt}
\alert{$r \in \ground{P}$}
\setlength{\leftmargini}{1em}
\begin{itemize}
\item $\pbody{r} \subseteq X$
%\item The Herbrand universe is obtained from $P$ and $X$
\end{itemize}
\end{varwidth}}
};
%\draw[step=1,help lines] (0,0) grid (10,10);
\end{tikzpicture}
}
\input{application_figs}
\end{frame}
% ----------------------------------------------------------------------
\begin{frame}<1-5>[label=nonrecframe]{Non-recursive programs}
\begin{itemize}
\item \alert<1>{Dependency graph} of program $P$
\begin{itemize}
\alt<7-8>{
\item rule $r_2$ \alert{depends} on rule $r_1$\\
\alt<7>{
if $b\in\pbody{r_2}\cup\nbody{r_2}$ \alert{unifies} with $\head{r_1}$
}{
if $b\in\pbody{r_2}\cup\nbody{r_2}$ and $\head{r_1}$ have \alert{the same predicate}
}
}{
\item rule $r_2$ depends on rule $r_1$
if $(\pbody{r_2}\cup\nbody{r_2})\cap\head{r_1}\neq\emptyset$
}
\item $G_P=(P,E)$ where $E=\{ (r_1,r_2) \mid r_2 \mbox{ depends on } r_1 \}$
\end{itemize}
\pause
\item Program $P$ is \alert<2>{non-recursive} if $G_P$ is acyclic, i.e., it has no path of length greater than zero
from some rule $r$ to itself.
\pause
\bigskip
%\item If $P$ is non-recursive then there is some topological ordering
\item If $P$ is \alert<3>{non-recursive} then there is some \alert<3>{topological ordering}
$(r_1, \ldots, r_n)$
of $G_P$. %and
\pause
\item For all such orderings the results of
\alert<4>{$\A{\{r_n\}}{\ldots\A{\{r_1\}}{\{\emptyset\}}}$}
coincide and are equal to the \alert<4>{stable models} of $P$.
\pause
\bigskip
\item \alert<5>{Methodology:}
\begin{enumerate}
\item Write the rules of non-recursive programs in order.
\item The stable models are the result of applying the rules in order.
\end{enumerate}
\end{itemize}
\end{frame}
% ----------------------------------------------------------------------
%\againframe<6>{newexamplelong}
% ----------------------------------------------------------------------
%\againframe<12>{newexamplelong}
% ----------------------------------------------------------------------
\begin{frame}<0>{Non-recursive programs}
\begin{itemize}
\item If $P$ is non-recursive then there is
some ordering $(p_1, p_2, \ldots)$ of the atoms of $P$ along with
some topological ordering
$(r_1, \ldots, r_n)$ of $G_P$ where:
\begin{itemize}
\item first occur the facts,
\item then the normal rules whose head is $p_1$,
\item then the choice rules whose head is $p_1$,
\item then the constraint rules that are independent of the rest of the rules,
\item then the normal rules whose head is $p_2$,
\item then the choice rules whose head is $p_2$,
\item and so on\ldots
\end{itemize}
%for some ordering $(p_1, p_2, \ldots)$ of the atoms of $P$
\item $\A{C_n}{\ldots\A{C_m}{\A{C_{m+1}}{\ldots\A{C_1}{\{\emptyset\}}}}} =
\A{C_n}{\ldots\A{C_m \cup C_{m+1}}{\ldots\A{C_1}{\{\emptyset\}}}}$ whenever
the rules of $C_m$ do not depend on the rules of $C_{m+1}$ and vice versa
\item Then we can group in separate components
the normal, choice and constraint rules for every atom, and also the initial facts
\end{itemize}
%\begin{textblock*}{\textwidth}(.75\textwidth,0.25\textheight)
% \begin{beamercolorbox}[wd=.5\textwidth,center,sep=0.3cm]{block body example}
% This is wrong!
% \end{beamercolorbox}
%\end{textblock*}
%\begin{tikzpicture}[remember picture,overlay]
%\node at (current page.center) {\alert{ground}};
%\node at (3,0.5) {\alert{\Huge{ground}}};
%\draw[step=1,help lines] (0,0) grid (10,10);
%\end{tikzpicture}
\end{frame}
% ----------------------------------------------------------------------
\againframe<9-11>{operatorframe}
% ----------------------------------------------------------------------
%\againframe<6>{examplerecursion}
%\againframe<10>{examplerecursion}
%\againframe<15>{examplerecursion}
% ----------------------------------------------------------------------
\begin{frame}<1-5>[label=easyframe]{Easy programs}
\begin{itemize}
\item \alert<1>{Dependency graph} of program $P$
\begin{itemize}
%\item rule $r_2$ depends on rule $r_1$
% if $(\pbody{r_2}\cup\nbody{r_2})\cap\head{r_1}\neq\emptyset$
%\item $G_P=(P,E)$ where $E=\{ (r_1,r_2) \mid r_2 \mbox{ depends on } r_1 \}$
\alt<7-8>{
\alt<7>{
\item an edge $(r_1,r_2)$ is \alert{negative} if $b \in \nbody{r_2}$ \alert{unifies} with $\head{r_1}$
}{
\item an edge $(r_1,r_2)$ is \alert{negative} if $b \in \nbody{r_2}$ and $\head{r_1}$
\par have \alert{the same predicate}
}
}{
\item an edge $(r_1,r_2)$ is \alert<1>{negative} if $\nbody{r_2}\cap\head{r_1}\neq\emptyset$
}
\end{itemize}
\pause
\item Program $P$ is \alert<2>{easy} if the strongly connected components of $G_P$
\begin{itemize}
\item do not include negative edges, and
\item do not include rules of different types.
\end{itemize}
%\only<3>{
%\begin{tikzpicture}[remember picture,overlay]
%\node[note]
% at (8.5,0.5) % CHANGE THIS
% {{\begin{varwidth}{90pt}
% Non-recursive programs
% are easy
% \end{varwidth}}
%};
%%\draw[step=1,help lines] (0,0) grid (10,10);
%\end{tikzpicture}
%}
\bigskip
\pause
\item If $P$ is \alert<3>{easy} then there is some \alert<3>{topological ordering}
$(C_1, \ldots, C_n)$ of the \alert<3>{strongly connected components}
of $G_P$.
\pause
\item For all such orderings the results of
\alert<4>{$\Afixp{C_n}{\ldots\Afixp{C_1}{\{\emptyset\}}}$}
coincide and are equal to the \alert<4>{stable models} of $P$.
\pause
\bigskip
\item Note:
The $C_i$'s are either sets of \alert<5>{recursive rules}, or
\alert<5>{singleton sets} $\{r\}$ where $r$ is not recursive,
in which case $\Appfixp{{\{r\}}}=\App{\{r\}}$.
\end{itemize}
\end{frame}
% ----------------------------------------------------------------------
%\againframe<10>{examplerecursion}
% ----------------------------------------------------------------------
%\againframe<15>{examplerecursion}
% ----------------------------------------------------------------------
\begin{frame}{Easy programs}
\begin{itemize}
\bigskip
\item \alert<1>{Methodology:}
\begin{enumerate}
\item Write the rules of easy programs in order.\par
The order between the rules of the recursive sets does not matter.
\item The stable models are the result of applying the rules in order, \par
iterating over the rules of the recursive sets.
\end{enumerate}
\bigskip
\item[$*$]<2-> The components may be \alert<2>{applied together}:
\begin{itemize}
\item
If the rules of $C_{m}$ \alert<2>{do not depend negatively} on the rules of $C_{m-1}$
$\Afixp{C_n}{\ldots\Afixp{C_m}{\Afixp{C_{m-1}}{\ldots\Afixp{C_1}{\{\emptyset\}}}}} =
\Afixp{C_n}{\ldots\Afixp{C_m \cup C_{m-1}}{\ldots\Afixp{C_1}{\{\emptyset\}}}}$.
\vspace{2pt}
\item If there are no dependencies between the rules of $C_i$ then
{$\Appfixp{{C_i}}=\App{C_i}$}.
\item Examples: non-recursive normal (or choice) rules with the same head,
facts at the start, constraints at the end\ldots
\end{itemize}
% \begin{itemize}
% %\item<3-> If \alert<3>{$P$ is positive}, then its stable models are
% % \alert<3>{$\Afixp{P}{\{\emptyset\}}$}.
% \item<4-> If \alert<4>{$C_i$ is not recursive}, then
% \alert<4>{$\Appfixp{{C_i}}=\App{C_i}$}.
% \end{itemize}
\end{itemize}
\end{frame}
% ----------------------------------------------------------------------
\begin{frame}{\alert{Extending} easy programs}
\begin{itemize}
\vfill
\item Allow rules of different types in strongly connected components %,\par
\medskip
\item Only disallow recursion through negation
\bigskip
\bigskip
\pause
\item Let $C$ be a strongly connected component of $G_P$
\alt<3>{
\[
\Appfixp{C} = \App{constraints(C)}\fixp{\big(
\Appfixp{normal(C)}
\App{choice(C)}\big)}
\]
}{
\[
\Appfixp{C} = \fixp{\big(\Appfixp{constraints(C)}
\Appfixp{normal(C)}
\Appfixp{choice(C)}\big)}
\]
}
% \begin{center}
% \end{center}
\vfill
\end{itemize}
\end{frame}
%
% a.
% {b} :- a.
% c :- b.
% d :- c.
% a :- d.
% returns {a, abc, abcd} if we use A_normal(C) without the star
%
% ----------------------------------------------------------------------
\begin{frame}<0>{Easy programs}
\begin{itemize}
\item If $P$ is easy then there is
some ordering $(X_1, \ldots, X_n)$ of a partition of the atoms of $P$ along with
some topological ordering
$(C_1, \ldots, C_n)$ of the strongly connected components of $G_P$
where:
\begin{itemize}
\item first occur the facts,
\item then the non-recursive normal rules whose head is in $X_1$,
\item then the non-recursive choice rules whose head is in $X_1$,
\item then the recursive rules whose head is in $X_1$,
\item then the constraint rules that are independent of the rest of the rules,
\item then the non-recursive normal rules whose head is in $X_2$,
\item and so on\ldots
\end{itemize}
%for some ordering $(p_1, p_2, \ldots)$ of the atoms of $P$
\item $\Afixp{C_n}{\ldots\Afixp{C_m}{\Afixp{C_{m+1}}{\ldots\Afixp{C_1}{\{\emptyset\}}}}} =
\Afixp{C_n}{\ldots\Afixp{C_m \cup C_{m+1}}{\ldots\Afixp{C_1}{\{\emptyset\}}}}$ whenever
the rules of $C_m$ do not depend on the rules of $C_{m+1}$ and vice versa
\item Then we can group in separate components
the normal, choice, recursive and constraint rules for every partition, and also the initial facts
\end{itemize}
\end{frame}
% ----------------------------------------------------------------------
\section{With Variables}
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
\begin{frame}{Example}
\xtodo
\end{frame}
% ----------------------------------------------------------------------
\begin{frame}{Extended logic programs \alert{with variables}}
\vfill
\begin{itemize}
\item Update the definitions of program and dependency graph as usual
\bigskip
\item \alert{Update the definition of \A{P}}
\bigskip
\item[$*$] Question: inforce finiteness, or redefine \Afixp{P}?
\end{itemize}
\vfill
\end{frame}
\againframe<5->{programsframe}
\againframe<12-13>{operatorframe}
\againframe<6-8>{nonrecframe}
\againframe<6-8>{easyframe}
% ----------------------------------------------------------------------
\section{Conclusion}
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
\begin{frame}{Conclusion}
\vfill
\begin{itemize}
\item Formal semantics for Easy ASP
\bigskip
\item Hopefully useful for explaining ASP
\bigskip
\item Extensions: arithmetics, aggregates, intervals, pooling
\bigskip
\item More extensions: functions, epistemic operators
\end{itemize}
\vfill
\end{frame}