From 825304472d030ff83a2a0da78a39c26e073e7ef3 Mon Sep 17 00:00:00 2001 From: Lucy D'Agostino McGowan Date: Mon, 5 Sep 2022 09:00:16 -0400 Subject: [PATCH] update package doc --- R/tipr-package.R | 11 ++++++----- man/tipr.Rd | 11 ++++++----- 2 files changed, 12 insertions(+), 10 deletions(-) diff --git a/R/tipr-package.R b/R/tipr-package.R index 2cf7e29..7b27b92 100644 --- a/R/tipr-package.R +++ b/R/tipr-package.R @@ -6,15 +6,16 @@ #' @docType package #' @references #' -#' D'Agostino McGowan, L. (2018). Improving Modern Techniques of Causal -#' Inference: Finite Sample Performance of ATM and ATO Doubly Robust Estimators, -#' Variance Estimation for ATO Estimators, and Contextualized Tipping Point -#' Sensitivity Analyses for Unmeasured Confounding. PhD thesis, Vanderbilt -#' University. +#' D'Agostino McGowan, L, (2022). tipr: An R package for sensitivity analyses +#' for unmeasured confounders. Journal of Open Source Software, 7(77), 4495. #' #' VanderWeele, TJ, and Peng D (2017). Sensitivity Analysis in Observational #' Research: Introducing the E-Value. Ann Intern Med, 167(4), 268–74. #' +#' Cinelli, C, & Hazlett, C (2020). Making sense of sensitivity: Extending +#' omitted variable bias. Journal of the Royal Statistical Society: Series B +#' (Statistical Methodology), 82(1), 39–67. +#' #' Lin, DY, Psaty, BM, & Kronmal, RA. (1998). Assessing the sensitivity #' of regression results to unmeasured confounders in observational studies. #' Biometrics, 54(3), 948–963. diff --git a/man/tipr.Rd b/man/tipr.Rd index cb9c793..5414fae 100644 --- a/man/tipr.Rd +++ b/man/tipr.Rd @@ -8,15 +8,16 @@ The tipr package. } \references{ -D'Agostino McGowan, L. (2018). Improving Modern Techniques of Causal -Inference: Finite Sample Performance of ATM and ATO Doubly Robust Estimators, -Variance Estimation for ATO Estimators, and Contextualized Tipping Point -Sensitivity Analyses for Unmeasured Confounding. PhD thesis, Vanderbilt -University. +D'Agostino McGowan, L, (2022). tipr: An R package for sensitivity analyses +for unmeasured confounders. Journal of Open Source Software, 7(77), 4495. VanderWeele, TJ, and Peng D (2017). Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med, 167(4), 268–74. +Cinelli, C, & Hazlett, C (2020). Making sense of sensitivity: Extending +omitted variable bias. Journal of the Royal Statistical Society: Series B +(Statistical Methodology), 82(1), 39–67. + Lin, DY, Psaty, BM, & Kronmal, RA. (1998). Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics, 54(3), 948–963.