forked from BIMIB-DISCo/scFBA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FluxClustering.m
81 lines (62 loc) · 2.11 KB
/
FluxClustering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
function [FluxPop, RxnPop] = FluxClustering(model, flux, nPop)
% Divide a population model optimization result in a matrix reactions x
% nPop
%
% USAGE:
%
% [scStruct] = Genes_Sign(scStruct, CutOff, Hist, ExpXLS, Epsilon, nBins, FitFunction)
%
% INPUT:
% model: Population model with model.rxns field.
% flux: Optimization of model compute with optimizeCbModel function
%
% OUTPUT:
% FluxPop: Matrix reactions x nPop fluxes
% RxnPop: Reactions identifier in the same order as the FluxPop rows.
%Rimerge reazioni splittate in Fw e BW <- QUESTO LO LASCIAMO??????????????????????????????????????????
%SE SI TOGLIERE QUESTI COMMENTI, CREDO SIA INUTILE QUINDI MEGLIO RIMUOVERLO
% NEL CASO CANCELLARE LE RIGHE SEGUENTI DOPO AVER UNCOMMENT IL TUTTO
VRxnName = model.rxns;
if isstruct(flux)
VFluxVal = flux.x;
else
VFluxVal = flux;
end
%---------------------------------------------
% VRxnName = [];
% VFluxVal = [];
% for i=1:length(model.rxns)
% if(strcmp(model.rxns{i}(1:3), 'Fw_'))
% RxName = model.rxns{i}(4:end);
% FluxVal = flux(i,:) - flux(i+1,:); %Fw - Bw
% VRxnName = [VRxnName; RxName];
% VFluxVal = [VFluxVal; FluxVal];
% elseif(~strcmp(model.rxns{i}(1:3), 'Bw_'))
% RxName = model.rxns(i);
% FluxVal = flux(i,:);
% VRxnName = [VRxnName; RxName];
% VFluxVal = [VFluxVal; FluxVal];
% end
% end
%-----------------------------------------------
%creazione matrice con indici della popolazione
FluxPop = [];
[VRxnName, IdxSort] = sort(VRxnName);
VFluxVal = VFluxVal(IdxSort);
for i=0:nPop-1
Suffix = strcat('_', num2str(i));
IdxPop = find(endsWith(VRxnName, Suffix)==1);
FluxPop = [FluxPop VFluxVal(IdxPop, :)];
end
RxnPop = VRxnName(IdxPop, :);
for k=1:length(RxnPop)
while (RxnPop{k}(end) ~= '_')
RxnPop{k} = RxnPop{k}(1:end-1);
end
RxnPop{k} = RxnPop{k}(1:end-1);
end
% cg = clustergram(FluxPop'); % cluster hitmap cellule x flussi
% Y = pdist(FluxPop');
% Z = linkage(Y);
% dendrogram(Z, 0);
end