-
Notifications
You must be signed in to change notification settings - Fork 5
/
my_division.h
194 lines (180 loc) · 4.44 KB
/
my_division.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#ifndef MY_DIVISION
#define MY_DIVISION
#include "my_integer.h"
#include "my_intrinsics.h"
#include "my_type_functions.h"
using namespace std;
template<typename T>
requires(ArchimedeanMonoid(T))
T remainder_recursive(T a, T b)
{
// Precondition:
// a >= b > 0
if (a - b >= b) {
a = remainder_recursive(a, b + b);
if (a < b) return a;
}
return a - b;
}
template<typename T>
requires(ArchimedeanMonoid(T))
T remainder_nonnegative(T a, T b)
{
// Precondition:
// a >= 0 && b > 0
if (a < b) return a;
return remainder_recursive(a, b);
}
template<typename T>
requires(ArchimedeanMonoid(T))
T largest_doubling(T a, T b)
{
// Precondition:
// a >= b > 0
while (b <= a - b) b = b + b;
return b;
// Postcondition:
// b <= a < b + b
}
template<typename T>
requires(HalvableMonoid(T))
T remainder_nonnegative_iterative(T a, T b)
{
// Precondition:
// a >= 0 && b > 0
if (a < b) return a;
T c = largest_doubling(a, b);
a = a - c;
do {
c = half(c);
if (a >= c) a = a - c;
} while (a >= b);
return a;
}
template<typename T>
requires(EuclideanMonoid(T))
T fast_subtractive_gcd(T a, T b)
{
// Precondition:
// a >= 0 && b >= 0 && !(a == 0 && b == 0)
while (true) {
if (b == T(0)) return a;
a = remainder_nonnegative(a, b);
if (a == T(0)) return b;
b = remainder_nonnegative(b, a);
}
}
template<typename T>
requires(EuclideanMonoid(T))
T gcd(T a, T b)
{
// Precondition:
// a >= 0 && b >= 0 && !(a == 0 && b == 0)
return fast_subtractive_gcd(a, b);
}
template<typename T>
requires(ArchimedeanMonoid(T))
pair<QuotientType(T), T> quo_rem_nonnegative(T a, T b)
{
// Precondition:
// a >= 0 && b > 0
typedef QuotientType(T) N;
if (a < b) return pair<N, T>(N(0), a);
if (a - b < b) return pair<N, T>(N(1), a - b);
pair<N, T> q = quo_rem_nonnegative(a, b + b);
N m = twice(q.first);
a = q.second;
if (a < b) return pair<N, T>(m, a);
return pair<N, T>(successor(m), a - b);
}
template<typename T>
requires(HalvableMonoid(T))
pair<QuotientType(T), T> quo_rem_nonnegative_iter(T a, T b)
{
// Precondition:
// a >= 0 && b > 0
typedef QuotientType(T) N;
if (a < b) return pair<N, T>(N(0), a);
T c = largest_doubling(a, b);
a = a - c;
N n(1);
while (c != b) {
n = twice(n);
c = half(c);
if (a >= c) {
a = a - c;
n = successor(n);
}
}
return pair<N, T>(n, a);
}
template<typename Op>
requires(BinaryOperation(Op) &&
ArchimedeanGroup(Domain(Op)))
Domain(Op) remainder(Domain(Op) a, Domain(Op) b, Op rem)
{
// Precondition:
// b != 0
typedef Domain(Op) T;
T r;
if (a < T(0))
if (b < T(0)) {
r = -rem(-a, -b);
} else {
r = rem(-a, b);
if (r != T(0)) r = b - r;
}
else
if (b < T(0)) {
r = rem(a, -b);
if (r != T(0)) r = b + r;
} else {
r = rem(a, b);
}
return r;
}
template<typename F>
requires(HomogeneousFunction(F) && Arity(F) == 2 &&
ArchimedeanGroup(Domain(F)) &&
Codomain(F) == pair<QuotientType(Domain(F)),
Domain(F)>)
pair<QuotientType(Domain(F)), Domain(F)>
quotient_remainder(Domain(F) a, Domain(F) b, F quo_rem)
{
// Precondition:
// b != 0
typedef Domain(F) T;
pair<QuotientType(T), T> q_r;
if (a < T(0)) {
if (b < T(0)) {
q_r = quo_rem(-a, -b); q_r.second = -q_r.second;
} else {
q_r = quo_rem(-a, b);
if (q_r.second != T(0)) {
q_r.second = b - q_r.second; q_r.first = successor(q_r.first);
}
q_r.first = -q_r.first;
}
} else {
if (b < T(0)) {
q_r = quo_rem(a, -b);
if (q_r.second != T(0)) {
q_r.second = b + q_r.second; q_r.first = successor(q_r.first);
}
q_r.first = -q_r.first;
} else
q_r = quo_rem(a, b);
}
return q_r;
}
template<typename T>
requires(ArchimedeanGroup(T) &&
HalvableMonoid(T))
pair<QuotientType(T), T>
quotient_remainder(T a, T b)
{
// Precondition:
// b != 0
return quotient_remainder(a, b, quo_rem_nonnegative_iter<T>);
}
#endif