-
Notifications
You must be signed in to change notification settings - Fork 19
/
scalar_example.py
234 lines (194 loc) · 7.18 KB
/
scalar_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*- coding: utf-8 -*-
"""
Created on Thu May 8 20:08:01 2014
@author: Tony Saad
"""
# !/usr/bin/env python
from scipy import interpolate
import numpy as np
from numpy import pi, exp
import time
import scipy.io
from tkespec import compute_tke_spectrum_1d
import isoturb
import isoturbo
import matplotlib.pyplot as plt
from fileformats import FileFormats
import isoio
plt.interactive(True)
# load an experimental specturm. Alternatively, specify it via a function call
cbcspec = np.loadtxt('cbc_spectrum.txt')
kcbc = cbcspec[:, 0] * 100
ecbc = cbcspec[:, 1] * 1e-6
especf = interpolate.interp1d(kcbc, ecbc, 'cubic')
def cbc_spec(k):
return especf(k)
def karman_spec(k):
nu = 1.0e-5
alpha = 1.452762113
urms = 0.25
ke = 40.0
kappae = np.sqrt(5.0 / 12.0) * ke
L = 0.746834 / kappae # integral length scale - sqrt(Pi)*Gamma(5/6)/Gamma(1/3)*1/ke
# L = 0.05 # integral length scale
# Kappae = 0.746834/L
epsilon = urms * urms * urms / L
kappaeta = pow(epsilon, 0.25) * pow(nu, -3.0 / 4.0)
r1 = k / kappae
r2 = k / kappaeta
espec = alpha * urms * urms / kappae * pow(r1, 4) / pow(1.0 + r1 * r1, 17.0 / 6.0) * np.exp(-2.0 * r2 * r2)
return espec
def power_spec(k):
Nu = 1 * 1e-3
L = 0.1
Li = 1
ch = 1
cl = 10
p0 = 8
c0 = pow(10, 2)
Beta = 2
Eta = Li / 20.0
ES = Nu * Nu * Nu / (Eta * Eta * Eta * Eta)
x = k * Eta
fh = np.exp(-Beta * pow(pow(x, 4) + pow(ch, 4), 0.25) - ch)
x = k * L
fl = pow(x / pow(x * x + cl, 0.5), 5.0 / 3.0 + p0)
espec = c0 * pow(k, -5.0 / 3.0) * pow(ES, 2.0 / 3.0) * fl * fh
return espec
# ----------------------------------------------------------------------------------------------
# __ __ ______ ________ _______ ______ __ __ _______ __ __ ________
# | \ | \ / \ | \| \ | \| \ | \| \ | \ | \| \
# | $$ | $$| $$$$$$\| $$$$$$$$| $$$$$$$\ \$$$$$$| $$\ | $$| $$$$$$$\| $$ | $$ \$$$$$$$$
# | $$ | $$| $$___\$$| $$__ | $$__| $$ | $$ | $$$\| $$| $$__/ $$| $$ | $$ | $$
# | $$ | $$ \$$ \ | $$ \ | $$ $$ | $$ | $$$$\ $$| $$ $$| $$ | $$ | $$
# | $$ | $$ _\$$$$$$\| $$$$$ | $$$$$$$\ | $$ | $$\$$ $$| $$$$$$$ | $$ | $$ | $$
# | $$__/ $$| \__| $$| $$_____ | $$ | $$ _| $$_ | $$ \$$$$| $$ | $$__/ $$ | $$
# \$$ $$ \$$ $$| $$ \| $$ | $$ | $$ \| $$ \$$$| $$ \$$ $$ | $$
# \$$$$$$ \$$$$$$ \$$$$$$$$ \$$ \$$ \$$$$$$ \$$ \$$ \$$ \$$$$$$ \$$
# ----------------------------------------------------------------------------------------------
# specify whether you want to use threads or not to generate turbulence
use_parallel = False
patches = [1, 1, 8]
filespec = 'cbc'
whichspec = cbc_spec
# set the number of modes you want to use to represent the velocity.
nmodes = 500
N = 32
# write to file
enableIO = False # enable writing to file
fileformat = FileFormats.FLAT # Specify the file format supported formats are: FLAT, IJK, XYZ
# save the velocity field as a matlab matrix (.mat)
savemat = False
# compute the mean of the fluctuations for verification purposes
computeMean = True
# input domain size in the x, y, and z directions. This value is typically
# based on the largest length scale that your data has. For the cbc data,
# the largest length scale corresponds to a wave number of 15, hence, the
# domain size is L = 2pi/15.
lx = 9 * 2.0 * pi / 100.0
ly = 9 * 2.0 * pi / 100.0
lz = 9 * 2.0 * pi / 100.0
# input number of cells (cell centered control volumes). This will
# determine the maximum wave number that can be represented on this grid.
# see wnn below
nx = N # number of cells in the x direction
ny = N # number of cells in the y direction
nz = N # number of cells in the z direction
# enter the smallest wavenumber represented by this spectrum
wn1 = 15 # determined here from cbc spectrum properties
# ------------------------------------------------------------------------------
# END USER INPUT
# ------------------------------------------------------------------------------
t0 = time.time()
phi = isoturb.generate_scalar_isotropic_turbulence(lx, ly, lz, nx, ny, nz, nmodes, wn1, whichspec)
t1 = time.time()
print('it took me ', t1 - t0, ' s to generate the isotropic turbulence.')
dx = lx / nx
dy = ly / ny
dz = lz / nz
#isoio.writefile('u.txt', 'x', dx, dy, dz, u, fileformat)
# if savemat:
# data = {} # CREATE empty dictionary
# data['U'] = u
# data['V'] = v
# data['W'] = w
# scipy.io.savemat('uvw.mat', data)
# compute mean velocities
if computeMean:
phimean = np.mean(phi)
print('mean u = ', phimean)
phifluc = phimean - phi
# print
# 'mean u fluct = ', np.mean(ufluc)
phifrms = np.mean(phifluc * phifluc)
# print
# 'u fluc rms = ', np.sqrt(ufrms)
# print
# 'v fluc rms = ', np.sqrt(vfrms)
# print
# 'w fluc rms = ', np.sqrt(wfrms)
# verify that the generated velocities fit the spectrum
knyquist, wavenumbers, tkespec = compute_tke_spectrum_1d(phi, lx, ly, lz, True)
# compare spectra
# integral comparison:
# find index of nyquist limit
idx = (np.where(wavenumbers == knyquist)[0][0]) - 1
km0 = 2.0 * np.pi / lx
nmodes = 5000
dk0 = (knyquist - km0) / nmodes
exactRange = km0 + np.arange(0, nmodes + 1) * dk0
exactE = np.trapz(karman_spec(exactRange), dx=dk0)
numE = np.trapz(tkespec[0:idx], dx=wavenumbers[0])
# print
# 'diff = ', abs(exactE - numE) / exactE * 100
# analyze how well we fit the input spectrum
# espec = cbc_spec(kcbc) # compute the cbc original spec
# compute the RMS error committed by the generated spectrum
# find index of nyquist limit
idx = (np.where(wavenumbers == knyquist)[0][0]) - 1
exact = whichspec(wavenumbers[4:idx])
num = tkespec[4:idx]
diff = np.abs((exact - num) / exact)
meanE = np.mean(diff)
print('got here ')
# print
# 'Mean Error = ', meanE * 100.0, '%'
# rmsE = np.sqrt(np.mean(diff * diff))
# print
# 'RMS Error = ', rmsE * 100, '%'
# np.savetxt('tkespec_' + filespec + '_' + str(N) + '.txt',np.transpose([wavenumbers,tkespec]))
# fig = plt.figure(figsize=(3.5, 2.6), dpi=100)
# plt.rc("font", size=10, family='serif')
wnn = np.arange(wn1, 2000)
l1, = plt.loglog(kcbc,ecbc, 'k-', label='input')
plt.loglog(wnn, whichspec(wnn), 'k-', label='input')
l2, = plt.loglog(wavenumbers, tkespec, 'bo-', markersize=4, markerfacecolor='w', markevery=1, label='computed')
# plt.axis([8, 10000, 1e-7, 1e-2])
# # plt.xticks(fontsize=12)
# # plt.yticks(fontsize=12)
# plt.axvline(x=knyquist, linestyle='--', color='black')
# plt.xlabel('$\kappa$ (1/m)')
# plt.ylabel('$E(\kappa)$ (m$^3$/s$^2$)')
# plt.grid()
# plt.gcf().tight_layout()
# # plt.title(str(N)+'$^3$')
# # plt.legend(handles=[l1,l2],loc=3)
# # fig.savefig('tkespec_' + filespec + '_' + str(N) + '.pdf')
#
q, ((p1,p2),(p3,p4)) = plt.subplots(2,2)
p1.plot(kcbc, ecbc, 'ob', kcbc, ecbc, '-')
p1.set_title('Interpolated Spectrum')
p1.grid()
p1.set_xlabel('wave number')
p1.set_ylabel('E')
p2.loglog(kcbc, ecbc, '-', wavenumbers, tkespec, 'ro-')
p2.axvline(x=knyquist, linestyle='--', color='black')
p2.set_title('Spectrum of generated turbulence')
p2.grid()
# contour plot
p3.matshow(phi[:,:,nz/2])
p3.set_title('phi')
p4.matshow(phi[:,ny/2,:])
p4.set_title('phi')
# #
plt.show(1)