Back to Teams Extension README
To customize the accelerator or run it locally, first, copy the .env.sample
file to your development environment's .env
file, and edit it according to environment variable values table below.
If you want to develop and run the Teams backend function container locally, use the following commands.
First, install Azure Functions Core Tools.
cd code\batch
func start
Or use the Azure Functions VS Code extension.
- Open the “extensions/teams” folder with Visual Studio Code
-
Open the file env\.env.local
-
Locate the environment variable AZURE_FUNCTION_URL.
-
Replace the
<AZURE_FUNCTION_URL>
with your local Teams Backend URL (i.e., http://localhost:7071/api/GetConversationResponse)AZURE_FUNCTION_URL=http://localhost:7071/api/GetConversationResponse
-
Save the file.
-
Select Teams Toolkit from the navigation panel.
-
Verify your signed into O365 and Azure with sideloading enabled.
-
Select the "play" button next to Local.
App Setting | Value | Note |
---|---|---|
AZURE_SEARCH_SERVICE | The URL of your Azure AI Search resource. e.g. https://.search.windows.net | |
AZURE_SEARCH_INDEX | The name of your Azure AI Search Index | |
AZURE_SEARCH_KEY | An admin key for your Azure AI Search resource | |
AZURE_SEARCH_USE_SEMANTIC_SEARCH | False | Whether or not to use semantic search |
AZURE_SEARCH_SEMANTIC_SEARCH_CONFIG | The name of the semantic search configuration to use if using semantic search. | |
AZURE_SEARCH_TOP_K | 5 | The number of documents to retrieve from Azure AI Search. |
AZURE_SEARCH_ENABLE_IN_DOMAIN | True | Limits responses to only queries relating to your data. |
AZURE_SEARCH_CONTENT_COLUMNS | List of fields in your Azure AI Search index that contains the text content of your documents to use when formulating a bot response. Represent these as a string joined with " | |
AZURE_SEARCH_CONTENT_VECTOR_COLUMNS | Field from your Azure AI Search index for storing the content's Vector embeddings | |
AZURE_SEARCH_DIMENSIONS | 1536 | Azure OpenAI Embeddings dimensions. 1536 for text-embedding-ada-002 |
AZURE_SEARCH_FIELDS_ID | id | AZURE_SEARCH_FIELDS_ID : Field from your Azure AI Search index that gives a unique idenitfier of the document chunk. id if you don't have a specific requirement. |
AZURE_SEARCH_FILENAME_COLUMN | AZURE_SEARCH_FILENAME_COLUMN : Field from your Azure AI Search index that gives a unique idenitfier of the source of your data to display in the UI. |
|
AZURE_SEARCH_TITLE_COLUMN | Field from your Azure AI Search index that gives a relevant title or header for your data content to display in the UI. | |
AZURE_SEARCH_URL_COLUMN | Field from your Azure AI Search index that contains a URL for the document, e.g. an Azure Blob Storage URI. This value is not currently used. | |
AZURE_SEARCH_FIELDS_TAG | tag | Field from your Azure AI Search index that contains tags for the document. tag if you don't have a specific requirement. |
AZURE_SEARCH_FIELDS_METADATA | metadata | Field from your Azure AI Search index that contains metadata for the document. metadata if you don't have a specific requirement. |
AZURE_OPENAI_RESOURCE | the name of your Azure OpenAI resource | |
AZURE_OPENAI_MODEL | The name of your model deployment | |
AZURE_OPENAI_MODEL_NAME | gpt-35-turbo | The name of the model |
AZURE_OPENAI_KEY | One of the API keys of your Azure OpenAI resource | |
AZURE_OPENAI_EMBEDDING_MODEL | text-embedding-ada-002 | The name of you Azure OpenAI embeddings model deployment |
AZURE_OPENAI_TEMPERATURE | 0 | What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. A value of 0 is recommended when using your data. |
AZURE_OPENAI_TOP_P | 1.0 | An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. We recommend setting this to 1.0 when using your data. |
AZURE_OPENAI_MAX_TOKENS | 1000 | The maximum number of tokens allowed for the generated answer. |
AZURE_OPENAI_STOP_SEQUENCE | Up to 4 sequences where the API will stop generating further tokens. Represent these as a string joined with " | |
AZURE_OPENAI_SYSTEM_MESSAGE | You are an AI assistant that helps people find information. | A brief description of the role and tone the model should use |
AZURE_OPENAI_API_VERSION | 2023-12-01-preview | API version when using Azure OpenAI on your data |
AzureWebJobsStorage | The connection string to the Azure Blob Storage for the Azure Functions Batch processing | |
BACKEND_URL | The URL for the Backend Batch Azure Function. Use http://localhost:7071 for local execution | |
DOCUMENT_PROCESSING_QUEUE_NAME | doc-processing | The name of the Azure Queue to handle the Batch processing |
AZURE_BLOB_ACCOUNT_NAME | The name of the Azure Blob Storage for storing the original documents to be processed | |
AZURE_BLOB_ACCOUNT_KEY | The key of the Azure Blob Storage for storing the original documents to be processed | |
AZURE_BLOB_CONTAINER_NAME | The name of the Container in the Azure Blob Storage for storing the original documents to be processed | |
AZURE_FORM_RECOGNIZER_ENDPOINT | The name of the Azure Form Recognizer for extracting the text from the documents | |
AZURE_FORM_RECOGNIZER_KEY | The key of the Azure Form Recognizer for extracting the text from the documents | |
APPINSIGHTS_CONNECTION_STRING | The Application Insights connection string to store the application logs | |
ORCHESTRATION_STRATEGY | openai_functions | Orchestration strategy. Use Azure OpenAI Functions (openai_functions) or LangChain (langchain) for messages orchestration. If you are using a new model version 0613 select "openai_functions" (or "langchain"), if you are using a 0314 model version select "langchain" |
AZURE_CONTENT_SAFETY_ENDPOINT | The endpoint of the Azure AI Content Safety service | |
AZURE_CONTENT_SAFETY_KEY | The key of the Azure AI Content Safety service | |
AZURE_SPEECH_SERVICE_KEY | The key of the Azure Speech service | |
AZURE_SPEECH_SERVICE_REGION | The region (location) of the Azure Speech service |