Skip to content

Latest commit

 

History

History
 
 

query_timestamps

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Query timestamps

Quick overview

Defines the order in which mutations are applied on the server. Ways to set it (by order of precedence, higher priority first):

  • USING TIMESTAMP in the query string.
  • programmatically with Statement.setQueryTimestamp().
  • timestamp generator: advanced.timestamp-generator in the configuration. Defaults to session-wide monotonic, also available: per-thread monotonic, server-side, or write your own.
  • if the generator didn't set it, assigned server-side.

In Cassandra, each mutation has a microsecond-precision timestamp, which is used to order operations relative to each other.

There are various ways to assign it:

CQL USING TIMESTAMP

You can explicitly provide the timestamp in your CQL query:

session.execute("INSERT INTO my_table(c1, c2) values (1, 1) " +
    "USING TIMESTAMP 1432815430948040");

Timestamp generator

The driver has a timestamp generator that gets invoked for every outgoing request; it either assigns a client-side timestamp to the request, or indicates that the server should assign it.

The timestamp generator is defined in the configuration.

AtomicTimestampGenerator

datastax-java-driver.advanced.timestamp-generator {
  class = AtomicTimestampGenerator
}

This is the default implementation. It always generates a client timestamp, and guarantees monotonicity (i.e. ever-increasing timestamps) across all application threads.

Note that, in order to achieve monotonicity, the generator might return timestamps that drift out in the future. This happens if timestamps are generated at a rate of more than one per microsecond, or more likely in the event of a system clock skew. When this happens, the generator logs a warning message in the category com.datastax.oss.driver.internal.core.time.MonotonicTimestampGenerator:

Clock skew detected: current tick (...) was ... microseconds behind the last generated timestamp (...),
returned timestamps will be artificially incremented to guarantee monotonicity.

You can control that message with these options:

datastax-java-driver.advanced.timestamp-generator {
  drift-warning {
    # How far in the future timestamps are allowed to drift before the warning is logged.
    # If it is undefined or set to 0, warnings are disabled.
    threshold = 1 second
    # How often the warning will be logged if timestamps keep drifting above the threshold.
    interval = 10 seconds
  }
}

This generator strives to achieve microsecond resolution on a best-effort basis. But in practice, the real accuracy of generated timestamps is largely dependent on the granularity of the operating system's clock. For most systems, this minimum granularity is millisecond, and the sub-millisecond part is simply a counter that gets incremented until the next clock tick, as provided by System.currentTimeMillis().

On some systems, however, it is possible to have a better granularity by using a JNR call to gettimeofday. This native call will be used when available, unless use of the Java clock is forced with this configuration option:

datastax-java-driver.advanced.timestamp-generator {
  force-java-clock = true
}

To check what the driver is currently using, turn on INFO logs for the category com.datastax.oss.driver.internal.core.time, and look for one of the following messages at initialization:

  • Using Java system clock because this was explicitly required in the configuration
  • Could not access native clock (see debug logs for details), falling back to Java system clock
  • Using native clock for microsecond precision

ThreadLocalTimestampGenerator

datastax-java-driver.advanced.timestamp-generator {
  class = ThreadLocalTimestampGenerator
}

This is similar to the atomic generator, except that it only guarantees monotonicity within each thread. In other words, if a given application thread invokes session.execute() multiple times, the timestamps will be strictly increasing; but across two or more application threads, there might be duplicates.

This is a bit more efficient, but should only be used when threads are not in direct competition for timestamp ties (i.e., they are executing independent statements).

It uses the same configuration options drift-warning andforce-java-clock; see the previous section for details.

ServerSideTimestampGenerator

datastax-java-driver.advanced.timestamp-generator {
  class = ServerSideTimestampGenerator
}

This implementation always lets the server assign a timestamp.

Custom

You can create your own generator by implementing TimestampGenerator, and referencing your implementation class from the configuration.

Using multiple generators

The timestamp generator can be overridden in execution profiles:

datastax-java-driver {
  advanced.timestamp-generator.class = AtomicTimestampGenerator
  profiles {
    profile1 {
      advanced.timestamp-generator.class = ServerSideTimestampGenerator
    }
    profile2 {}
  } 
}

The profile1 profile uses its own generator. The profile2 profile inherits the default profile's. Note that this goes beyond configuration inheritance: the driver only creates a single AtomicTimestampGenerator instance and reuses it (this also occurs if two sibling profiles have the same configuration).

Each request uses its declared profile's generator. If it doesn't declare any profile, or if the profile doesn't have a dedicated policy, then the default profile's generator is used.

Per-statement timestamp

Finally, you can assign a timestamp to a statement directly from application code:

Statement statement =
    SimpleStatement.builder("UPDATE users SET email = '[email protected]' where id = 1")
        .setQueryTimestamp(1432815430948040L)
        .build();
session.execute(statement);

Timestamps and lightweight transactions

Client-side timestamps are prohibited for lightweight transactions (used for conditional updates such as INSERT... IF NOT EXISTS, UPDATE... IF..., etc.).

If you add a USING TIMESTAMP clause to such a query, the server will return an error:

cqlsh> UPDATE foo USING TIMESTAMP 1234 SET v=1 WHERE k=0 IF v=2;
InvalidRequest: Error from server: code=2200 [Invalid query] message="Cannot provide custom timestamp for conditional updates"

If you execute a conditional update through the driver with a client-side timestamp generator, the client-side timestamp will be silently ignored and the server will provide its own.

Summary

Here is the order of precedence of all the methods described so far:

  1. if there is a USING TIMESTAMP clause in the CQL string, use that over anything else;
  2. otherwise, if a default timestamp was set directly on the statement, use it;
  3. otherwise, if the timestamp generator assigned a timestamp, use it;
  4. otherwise, let the server assign the timestamp.