-
Notifications
You must be signed in to change notification settings - Fork 37
/
predictors.py
executable file
·211 lines (189 loc) · 9 KB
/
predictors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Classes for predictors and special layers.
"""
import dynet
import numpy as np
from constants import BALANCED, IMBALANCED
class SequencePredictor:
"""Convenience class to wrap a sequence prediction model."""
def __init__(self, builder):
"""Initializes the model. Expects a LSTMBuilder or SimpleRNNBuilder."""
self.builder = builder
def predict_sequence(self, inputs):
"""Predicts the output of a sequence."""
return [self.builder(x) for x in inputs]
class RNNSequencePredictor(SequencePredictor):
"""Convenience class to wrap an RNN model."""
def predict_sequence(self, inputs):
s_init = self.builder.initial_state()
return [x.output() for x in s_init.add_inputs(inputs)]
class BiRNNSequencePredictor(SequencePredictor):
"""Convenience class to wrap an LSTM builder."""
def predict_sequence(self, f_inputs, b_inputs):
f_init = self.builder.initial_state()
b_init = self.builder.initial_state()
forward_sequence = [x.output() for x in f_init.add_inputs(f_inputs)]
backward_sequence = [x.output() for x in b_init.add_inputs(
reversed(b_inputs))]
return forward_sequence, backward_sequence
class CrossStitchLayer:
"""Cross-stitch layer class."""
def __init__(self, model, num_tasks, hidden_dim, num_subspaces=1,
init_scheme=BALANCED):
"""
Initializes a CrossStitchLayer.
:param model: the DyNet Model
:param num_tasks: the number of tasks
:param hidden_dim: the # of hidden dimensions of the previous LSTM layer
:param num_subspaces: the number of subspaces
:param init_scheme: the initialization scheme; balanced or imbalanced
"""
print('Using %d subspaces...' % num_subspaces, flush=True)
alpha_params = np.full((num_tasks * num_subspaces,
num_tasks * num_subspaces),
1. / (num_tasks * num_subspaces))
if init_scheme == IMBALANCED:
if num_subspaces == 1:
alpha_params = np.full((num_tasks, num_tasks),
0.1 / (num_tasks - 1))
for i in range(num_tasks):
alpha_params[i, i] = 0.9
else:
# 0 1 0 1
# 0 1 0 1
# 1 0 1 0
# 1 0 1 0
for (x, y), value in np.ndenumerate(alpha_params):
if (y + 1) % num_subspaces == 0 and not \
(x in range(num_tasks, num_tasks+num_subspaces)):
alpha_params[x, y] = 0.95
elif (y + num_subspaces) % num_subspaces == 0 and x \
in range(num_tasks, num_tasks+num_subspaces):
alpha_params[x, y] = 0.95
else:
alpha_params[x, y] = 0.05
self.alphas = model.add_parameters(
(num_tasks*num_subspaces, num_tasks*num_subspaces),
init=dynet.NumpyInitializer(alpha_params))
print('Initializing cross-stitch units to:', flush=True)
print(dynet.parameter(self.alphas).value(), flush=True)
self.num_tasks = num_tasks
self.num_subspaces = num_subspaces
self.hidden_dim = hidden_dim
def stitch(self, predictions):
"""
Takes as inputs a list of the predicted states of the previous layers of
each task, e.g. for two tasks a list containing two lists of
n-dimensional output states. For every time step, the predictions of
each previous task layer are then multiplied with the cross-stitch
units to obtain a linear combination. In the end, we obtain a list of
lists of linear combinations of states for every subsequent task layer.
:param predictions: a list of length num_tasks containing the predicted
states for each task
:return: a list of length num_tasks containing the linear combination of
predictions for each task
"""
assert self.num_tasks == len(predictions)
linear_combinations = []
# iterate over tuples of predictions of each task at every time step
for task_predictions in zip(*predictions):
# concatenate the predicted state for all tasks to a matrix of shape
# (num_tasks*num_subspaces, hidden_dim/num_subspaces);
# we can multiply this directly with the alpha values
concat_task_predictions = dynet.reshape(
dynet.concatenate_cols(list(task_predictions)),
(self.num_tasks*self.num_subspaces,
self.hidden_dim / self.num_subspaces))
# multiply the alpha matrix with the concatenated predictions to
# produce a linear combination of predictions
alphas = dynet.parameter(self.alphas)
product = alphas * concat_task_predictions
if self.num_subspaces != 1:
product = dynet.reshape(product,
(self.num_tasks, self.hidden_dim))
linear_combinations.append(product)
stitched = [linear_combination for linear_combination in
zip(*linear_combinations)]
return stitched
class LayerStitchLayer:
"""Layer-stitch layer class."""
def __init__(self, model, num_layers, hidden_dim, init_scheme=IMBALANCED):
"""
Initializes a LayerStitchLayer.
:param model: the DyNet model
:param num_layers: the number of layers
:param hidden_dim: the hidden dimensions of the LSTM layers
:param init_scheme: the initialisation scheme; balanced or imbalanced
"""
if init_scheme == IMBALANCED:
beta_params = np.full((num_layers), 0.1 / (num_layers - 1))
beta_params[-1] = 0.9
elif init_scheme == BALANCED:
beta_params = np.full((num_layers), 1. / num_layers)
else:
raise ValueError('Invalid initialization scheme for layer-stitch '
'units: %s.' % init_scheme)
self.betas = model.add_parameters(
num_layers, init=dynet.NumpyInitializer(beta_params))
print('Initializing layer-stitch units to:', flush=True)
print(dynet.parameter(self.betas).value(), flush=True)
self.num_layers = num_layers
self.hidden_dim = hidden_dim
def stitch(self, layer_predictions):
"""
Takes as input the predicted states of all the layers of a task-specific
network and produces a linear combination of them.
:param layer_predictions: a list of length num_layers containing lists
of length seq_len of predicted states for
each layer
:return: a list of linear combinations of the predicted states at every
time step for each layer
"""
assert len(layer_predictions) == self.num_layers
linear_combinations = []
# iterate over tuples of predictions of each layer at every time step
for layer_states in zip(*layer_predictions):
# concatenate the predicted state for all layers to a matrix of
# shape (num_layers, hidden_dim)
concatenated_layer_states = dynet.reshape(dynet.concatenate_cols(
list(layer_states)), (self.num_layers, self.hidden_dim))
# multiply with (1, num_layers) betas to produce (1, hidden_dim)
product = dynet.transpose(dynet.parameter(
self.betas)) * concatenated_layer_states
# reshape to (hidden_dim)
reshaped = dynet.reshape(product, (self.hidden_dim,))
linear_combinations.append(reshaped)
return linear_combinations
class Layer:
"""Class for a single layer or a two-layer MLP."""
def __init__(self, model, in_dim, output_dim, activation=dynet.tanh,
mlp=False):
"""
Initialize the layer and add its parameters to the model.
:param model: the DyNet Model
:param in_dim: the input dimension
:param output_dim: the output dimension
:param activation: the activation function that should be used
:param mlp: if True, add a hidden layer with 100 dimensions
"""
self.act = activation
self.mlp = mlp
if mlp:
mlp_dim = 100
self.W_mlp = model.add_parameters((mlp_dim, in_dim))
self.b_mlp = model.add_parameters((mlp_dim))
else:
mlp_dim = in_dim
self.W_out = model.add_parameters((output_dim, mlp_dim))
self.b_out = model.add_parameters((output_dim))
def __call__(self, x):
if self.mlp:
W_mlp = dynet.parameter(self.W_mlp)
b_mlp = dynet.parameter(self.b_mlp)
input = dynet.rectify(W_mlp*x + b_mlp)
else:
input = x
W_out = dynet.parameter(self.W_out)
b_out = dynet.parameter(self.b_out)
act = self.act(W_out*input + b_out)
return act