-
Notifications
You must be signed in to change notification settings - Fork 1
/
ProductQuantizer.cpp
742 lines (619 loc) · 23.5 KB
/
ProductQuantizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include "ProductQuantizer.h"
#include <cstddef>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include "FaissAssert.h"
#include "VectorTransform.h"
#include "IndexFlat.h"
#include "utils.h"
extern "C" {
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
int sgemm_ (const char *transa, const char *transb, FINTEGER *m, FINTEGER *
n, FINTEGER *k, const float *alpha, const float *a,
FINTEGER *lda, const float *b, FINTEGER *
ldb, float *beta, float *c, FINTEGER *ldc);
}
namespace faiss {
template <typename CT, class C>
void pq_estimators_from_tables_Mmul4 (int M, const CT * codes,
size_t ncodes,
const float * __restrict dis_table,
size_t ksub,
size_t k,
float * heap_dis,
long * heap_ids)
{
for (size_t j = 0; j < ncodes; j++) {
float dis = 0;
const float *dt = dis_table;
for (size_t m = 0; m < M; m+=4) {
float dism = 0;
dism = dt[*codes++]; dt += ksub;
dism += dt[*codes++]; dt += ksub;
dism += dt[*codes++]; dt += ksub;
dism += dt[*codes++]; dt += ksub;
dis += dism;
}
if (C::cmp (heap_dis[0], dis)) {
heap_pop<C> (k, heap_dis, heap_ids);
heap_push<C> (k, heap_dis, heap_ids, dis, j);
}
}
}
/* compute an estimator using look-up tables for typical values of M */
/*
codes : 数据库码本
ncodes : 数据库大小
dis_table : 子向量到每个质心的距离
ksub :子空间质心个数
k :堆保存前topk个查询结果
*/
template <typename CT, class C>
void pq_estimators_from_tables_M4 (const CT * codes,
size_t ncodes,
const float * __restrict dis_table,
size_t ksub,
size_t k,
float * heap_dis,
long * heap_ids)
{
/// 计算查询向量到数据库向量的距离
for (size_t j = 0; j < ncodes; j++) {
float dis = 0;
const float *dt = dis_table;
/// 计算查询向量到每个向量的距离
dis = dt[*codes++]; dt += ksub;
dis += dt[*codes++]; dt += ksub;
dis += dt[*codes++]; dt += ksub;
dis += dt[*codes++];
///并把满足条件的值存入堆中
if (C::cmp (heap_dis[0], dis)) {
heap_pop<C> (k, heap_dis, heap_ids);
heap_push<C> (k, heap_dis, heap_ids, dis, j);
}
}
}
template <typename CT, class C>
static inline void pq_estimators_from_tables (const ProductQuantizer * pq,
const CT * codes,
size_t ncodes,
const float * dis_table,
size_t k,
float * heap_dis,
long * heap_ids)
{
/// 计算查询向量到数据库向量的距离
if (pq->M == 4) {
pq_estimators_from_tables_M4<CT, C> (codes, ncodes,
dis_table, pq->ksub, k,
heap_dis, heap_ids);
return;
}
/// 计算查询向量到数据库向量的距离
if (pq->M % 4 == 0) {
pq_estimators_from_tables_Mmul4<CT, C> (pq->M, codes, ncodes,
dis_table, pq->ksub, k,
heap_dis, heap_ids);
return;
}
/// 计算查询向量到数据库向量的距离
/* Default is relatively slow */
const size_t M = pq->M;
const size_t ksub = pq->ksub;
for (size_t j = 0; j < ncodes; j++) {
float dis = 0;
const float * __restrict dt = dis_table;
for (int m = 0; m < M; m++) {
dis += dt[*codes++];
dt += ksub;
}
if (C::cmp (heap_dis[0], dis)) {
heap_pop<C> (k, heap_dis, heap_ids);
heap_push<C> (k, heap_dis, heap_ids, dis, j);
}
}
}
/*********************************************
* PQ implementation
*********************************************/
ProductQuantizer::ProductQuantizer (size_t d, size_t M, size_t nbits):
d(d), M(M), nbits(nbits), assign_index(nullptr)
{
set_derived_values ();
}
ProductQuantizer::ProductQuantizer ():
d(0), M(1), nbits(0), assign_index(nullptr)
{
set_derived_values ();
}
//根据d, M and nbits计算dsub byte_per_idx code_size ksub的值
void ProductQuantizer::set_derived_values () {
// quite a few derived values
FAISS_THROW_IF_NOT (d % M == 0);
dsub = d / M;
byte_per_idx = (nbits + 7) / 8;
code_size = byte_per_idx * M;
ksub = 1 << nbits;
centroids.resize (d * ksub);
verbose = false;
train_type = Train_default;
}
/// 质心拷贝
void ProductQuantizer::set_params (const float * centroids_, int m)
{
memcpy (get_centroids(m, 0), centroids_,
ksub * dsub * sizeof (centroids_[0]));
}
/// 初始化质心
static void init_hypercube (int d, int nbits,
int n, const float * x,
float *centroids)
{
/// 把数据集中每个维度的值求和存入mean[j]
std::vector<float> mean (d);
for (int i = 0; i < n; i++)
for (int j = 0; j < d; j++)
mean [j] += x[i * d + j];
/// 对数据集中每个维度数据求平均值,并把各维度平均值的最大值存入maxm中
float maxm = 0;
for (int j = 0; j < d; j++) {
mean [j] /= n;
if (fabs(mean[j]) > maxm) maxm = fabs(mean[j]);
}
/// 对每个质心的每个维度进行初始化
for (int i = 0; i < (1 << nbits); i++) {
float * cent = centroids + i * d;
for (int j = 0; j < nbits; j++)
cent[j] = mean [j] + (((i >> j) & 1) ? 1 : -1) * maxm;
for (int j = nbits; j < d; j++)
cent[j] = mean [j];
}
}
/// 用hypercube_pca方式初始化质心
static void init_hypercube_pca (int d, int nbits,
int n, const float * x,
float *centroids)
{
/// 对数据集进行pca降维
PCAMatrix pca (d, nbits);
pca.train (n, x);
/// 初始化质心
for (int i = 0; i < (1 << nbits); i++) {
float * cent = centroids + i * d;
for (int j = 0; j < d; j++) {
cent[j] = pca.mean[j];
float f = 1.0;
for (int k = 0; k < nbits; k++)
cent[j] += f *
sqrt (pca.eigenvalues [k]) *
(((i >> k) & 1) ? 1 : -1) *
pca.PCAMat [j + k * d];
}
}
}
/// PQ算法训练,其中 x 为训练集数据,n 为训练集大小
void ProductQuantizer::train (int n, const float * x)
{
/// 各个子空间不共享质心(即:需要对每个子空间进行训练)
if (train_type != Train_shared) {
train_type_t final_train_type;
final_train_type = train_type;
if (train_type == Train_hypercube ||
train_type == Train_hypercube_pca) {
if (dsub < nbits) {
final_train_type = Train_default;
printf ("cannot train hypercube: nbits=%ld > log2(d=%ld)\n",
nbits, dsub);
}
}
/// xslice用来存储训练集的第 m 段的数据集
float * xslice = new float[n * dsub];
ScopeDeleter<float> del (xslice);
/// 用训练集训练 M 个子空间(即:获取每个子空间的质心)
for (int m = 0; m < M; m++) {
/// 把训练集的第 m 个段存入xslice
for (int j = 0; j < n; j++)
memcpy (xslice + j * dsub,
x + j * d + m * dsub,
dsub * sizeof(float));
/// 创建一个聚类对象
Clustering clus (dsub, ksub, cp);
// we have some initialization for the centroids
// 初始化聚类质心
if (final_train_type != Train_default) {
clus.centroids.resize (dsub * ksub);
}
switch (final_train_type) {
/// 使用hypercube方式初始化质心
case Train_hypercube:
init_hypercube (dsub, nbits, n, xslice,
clus.centroids.data ());
break;
/// 使用Train_hypercube_pca方式初始化质心
case Train_hypercube_pca:
init_hypercube_pca (dsub, nbits, n, xslice,
clus.centroids.data ());
break;
/// 使用已训练的好的质心初始化质心
case Train_hot_start:
memcpy (clus.centroids.data(),
get_centroids (m, 0),
dsub * ksub * sizeof (float));
break;
default: ;
}
if(verbose) {
clus.verbose = true;
printf ("Training PQ slice %d/%zd\n", m, M);
}
IndexFlatL2 index (dsub);
/// 训练质心
clus.train (n, xslice, assign_index ? *assign_index : index);
/// 把训练好的质心拷贝到ProductQuantizer的centroids中,然后训练完成
set_params (clus.centroids.data(), m);
}
/// 如果train_type == Train_shared,表示用数据集中所有子向量训练 k 个公共的质心
} else {
Clustering clus (dsub, ksub, cp);
if(verbose) {
clus.verbose = true;
printf ("Training all PQ slices at once\n");
}
IndexFlatL2 index (dsub);
// 用数据集中所有子向量训练 k 个公共的质心
clus.train (n * M, x, assign_index ? *assign_index : index);
// 所有每个子空间质心是一样的
for (int m = 0; m < M; m++) {
set_params (clus.centroids.data(), m);
}
}
}
/// 对一个向量进行product quantizer 编码 即:编码过程 并把编码结果存入code中
void ProductQuantizer::compute_code (const float * x, uint8_t * code) const
{
/// 创建存放一个向量 x 到 ksub 个质心中的距离
float distances [ksub];
for (size_t m = 0; m < M; m++) {
/// 用来保存向量 x 到 ksub 个质心中的距离的最短距离
float mindis = 1e20;
/// 用来保存向量 x 最近质心的索引
int idxm = -1;
/// 获取子向量 xsub
const float * xsub = x + m * dsub;
/// 计算子向量到 xsub 到对应子空间质心的距离,并把各个距离保存到distance中
fvec_L2sqr_ny (distances, xsub, get_centroids(m, 0), dsub, ksub);
/* Find best centroid */
/// 从distance中获取最短距离和质心编号
size_t i;
for (i = 0; i < ksub; i++) {
float dis = distances [i];
if (dis < mindis) {
mindis = dis;
idxm = i;
}
}
/// 保存向量编码结果到code中
switch (byte_per_idx) {
case 1: code[m] = (uint8_t) idxm; break;
case 2: ((uint16_t *) code)[m] = (uint16_t) idxm; break;
}
}
}
/// 对单个pq码进行解码 即:根据pq码获取 向量
void ProductQuantizer::decode (const uint8_t *code, float *x) const
{
if (byte_per_idx == 1) {
for (size_t m = 0; m < M; m++) {
memcpy (x + m * dsub, get_centroids(m, code[m]),
sizeof(float) * dsub);
}
} else {
const uint16_t *c = (const uint16_t*) code;
for (size_t m = 0; m < M; m++) {
memcpy (x + m * dsub, get_centroids(m, c[m]),
sizeof(float) * dsub);
}
}
}
/// 对多个pq码进行解码
void ProductQuantizer::decode (const uint8_t *code, float *x, size_t n) const
{
for (size_t i = 0; i < n; i++) {
this->decode (code + code_size * i, x + d * i);
}
}
// 根据距离池得到pq码
void ProductQuantizer::compute_code_from_distance_table (const float *tab,
uint8_t *code) const
{
for (size_t m = 0; m < M; m++) {
float mindis = 1e20;
int idxm = -1;
/* Find best centroid */
for (size_t j = 0; j < ksub; j++) {
float dis = *tab++;
if (dis < mindis) {
mindis = dis;
idxm = j;
}
}
switch (byte_per_idx) {
case 1: code[m] = (uint8_t) idxm; break;
case 2: ((uint16_t *) code)[m] = (uint16_t) idxm; break;
}
}
}
/// 对多个向量进行product quantizer 编码
void ProductQuantizer::compute_codes (const float * x,
uint8_t * codes,
size_t n) const
{
/// 如果向量小于16维则直接计算pq码
if (dsub < 16) { // simple direct computation
#pragma omp parallel for
for (size_t i = 0; i < n; i++)
compute_code (x + i * d, codes + i * code_size);
/// 否则间接计算pq码,先计算距离池,然后再根据距离池计算pq码
} else { // worthwile to use BLAS
/// 创建一个大小为 n * ksub * M 的距离池
float *dis_tables = new float [n * ksub * M];
ScopeDeleter<float> del (dis_tables);
/// 计算距离池
compute_distance_tables (n, x, dis_tables);
/// 根据距离池计算pq码
#pragma omp parallel for
for (size_t i = 0; i < n; i++) {
uint8_t * code = codes + i * code_size;
const float * tab = dis_tables + i * ksub * M;
compute_code_from_distance_table (tab, code);
}
}
}
/// 用 L2 距离计算各子向量到对应子空间的质心的距离
void ProductQuantizer::compute_distance_table (const float * x,
float * dis_table) const
{
size_t m;
//计算各子向量到对应子空间的质心的距离
for (m = 0; m < M; m++) {
/// 用 L2 距离计算一个向量到ksub个质心的距离,并把格局里保存到dis_table中
fvec_L2sqr_ny (dis_table + m * ksub,
x + m * dsub,
get_centroids(m, 0),
dsub,
ksub);
}
}
/// 用 內积 距离计算各子向量到对应子空间的质心的距离
void ProductQuantizer::compute_inner_prod_table (const float * x,
float * dis_table) const
{
size_t m;
for (m = 0; m < M; m++) {
fvec_inner_products_ny (dis_table + m * ksub,
x + m * dsub,
get_centroids(m, 0),
dsub,
ksub);
}
}
/// 用 L2 距离计算数据集x各个子向量到对应子空间质心的距离
void ProductQuantizer::compute_distance_tables (
size_t nx,
const float * x,
float * dis_tables) const
{
if (dsub < 16) {
#pragma omp parallel for
for (size_t i = 0; i < nx; i++) {
compute_distance_table (x + i * d, dis_tables + i * ksub * M);
}
} else { // use BLAS
for (int m = 0; m < M; m++) {
pairwise_L2sqr (dsub,
nx, x + dsub * m,
ksub, centroids.data() + m * dsub * ksub,
dis_tables + ksub * m,
d, dsub, ksub * M);
}
}
}
/// 用 內积 距离计算数据集x各个子向量到对应子空间质心的距离
void ProductQuantizer::compute_inner_prod_tables (
size_t nx,
const float * x,
float * dis_tables) const
{
if (dsub < 16) {
#pragma omp parallel for
for (size_t i = 0; i < nx; i++) {
compute_inner_prod_table (x + i * d, dis_tables + i * ksub * M);
}
} else { // use BLAS
// compute distance tables
for (int m = 0; m < M; m++) {
FINTEGER ldc = ksub * M, nxi = nx, ksubi = ksub,
dsubi = dsub, di = d;
float one = 1.0, zero = 0;
sgemm_ ("Transposed", "Not transposed",
&ksubi, &nxi, &dsubi,
&one, ¢roids [m * dsub * ksub], &dsubi,
x + dsub * m, &di,
&zero, dis_tables + ksub * m, &ldc);
}
}
}
template <typename CT, class C>
static void pq_knn_search_with_tables (
const ProductQuantizer * pq,
const float *dis_tables,
const uint8_t * codes,
const size_t ncodes,
HeapArray<C> * res,
bool init_finalize_heap)
{
size_t k = res->k, nx = res->nh;
size_t ksub = pq->ksub, M = pq->M;
#pragma omp parallel for
for (size_t i = 0; i < nx; i++) {
/* query preparation for asymmetric search: compute look-up tables */
/* 非对称搜索的查询准备:计算查找表 */
const float* dis_table = dis_tables + i * ksub * M;
/* Compute distances and keep smallest values */
/* 计算距离并保持最小值 */
long * __restrict heap_ids = res->ids + i * k;
float * __restrict heap_dis = res->val + i * k;
if (init_finalize_heap) {
heap_heapify<C> (k, heap_dis, heap_ids);
}
pq_estimators_from_tables<CT, C> (pq,
(CT*)codes, ncodes,
dis_table,
k, heap_dis, heap_ids);
if (init_finalize_heap) {
heap_reorder<C> (k, heap_dis, heap_ids);
}
}
}
/*
static inline void pq_estimators_from_tables (const ProductQuantizer * pq,
const CT * codes,
size_t ncodes,
const float * dis_table,
size_t k,
float * heap_dis,
long * heap_ids)
*/
/** perform a search (L2 distance)
* @param x 查询向量, size nx * d
* @param nx 查询向量集大小
* @param codes 数据库码本, size ncodes * byte_per_idx
* @param ncodes 数据库码本大小
* @param res 存储结果的堆数组 (nh == nx)
* @param init_finalize_heap initialize heap (input) and sort (output)?
*/
void ProductQuantizer::search (const float * __restrict x,
size_t nx,
const uint8_t * codes,
const size_t ncodes,
float_maxheap_array_t * res,
bool init_finalize_heap) const
{
FAISS_THROW_IF_NOT (nx == res->nh);
///计算查询向量集到质心的距离
float * dis_tables = new float [nx * ksub * M];
ScopeDeleter<float> del(dis_tables);
compute_distance_tables (nx, x, dis_tables);
if (byte_per_idx == 1) {
pq_knn_search_with_tables<uint8_t, CMax<float, long> > (
this, dis_tables, codes, ncodes, res, init_finalize_heap);
} else if (byte_per_idx == 2) {
pq_knn_search_with_tables<uint16_t, CMax<float, long> > (
this, dis_tables, codes, ncodes, res, init_finalize_heap);
}
}
/** perform a search (inner product distance)
* @param x 查询向量, size nx * d
* @param nx 查询向量集大小
* @param codes 数据库码本, size ncodes * byte_per_idx
* @param ncodes 数据库码本大小
* @param res 存储结果的堆数组 (nh == nx)
* @param init_finalize_heap initialize heap (input) and sort (output)?
*/
void ProductQuantizer::search_ip (const float * __restrict x,
size_t nx,
const uint8_t * codes,
const size_t ncodes,
float_minheap_array_t * res,
bool init_finalize_heap) const
{
FAISS_THROW_IF_NOT (nx == res->nh);
float * dis_tables = new float [nx * ksub * M];
ScopeDeleter<float> del(dis_tables);
compute_inner_prod_tables (nx, x, dis_tables);
if (byte_per_idx == 1) {
pq_knn_search_with_tables<uint8_t, CMin<float, long> > (
this, dis_tables, codes, ncodes, res, init_finalize_heap);
} else if (byte_per_idx == 2) {
pq_knn_search_with_tables<uint16_t, CMin<float, long> > (
this, dis_tables, codes, ncodes, res, init_finalize_heap);
}
}
//求平方
static float sqr (float x) {
return x * x;
}
// 计算质心之间的对称距离 如:
void ProductQuantizer::compute_sdc_table ()
{
sdc_table.resize (M * ksub * ksub);
for (int m = 0; m < M; m++) {
const float *cents = centroids.data() + m * ksub * dsub;
float * dis_tab = sdc_table.data() + m * ksub * ksub;
// TODO optimize with BLAS
for (int i = 0; i < ksub; i++) {
const float *centi = cents + i * dsub;
for (int j = 0; j < ksub; j++) {
float accu = 0;
const float *centj = cents + j * dsub;
for (int k = 0; k < dsub; k++)
accu += sqr (centi[k] - centj[k]);
dis_tab [i + j * ksub] = accu; // dis += tab[bcode[m] + qcode[m] * ksub];
}
}
}
}
/** perform a search (symetic distance)
* @param qcodes 查询向量码本, size nx * d
* @param nq 查询向量集大小
* @param bcodes 数据库码本, size ncodes * byte_per_idx
* @param ncodes 数据库码本大小
* @param res 存储结果的堆数组 (nh == nx)
* @param init_finalize_heap initialize heap (input) and sort (output)?
*/
void ProductQuantizer::search_sdc (const uint8_t * qcodes,
size_t nq,
const uint8_t * bcodes,
const size_t nb,
float_maxheap_array_t * res,
bool init_finalize_heap) const
{
FAISS_THROW_IF_NOT (sdc_table.size() == M * ksub * ksub);
FAISS_THROW_IF_NOT (byte_per_idx == 1);
size_t k = res->k;
#pragma omp parallel for
for (size_t i = 0; i < nq; i++) {
/* Compute distances and keep smallest values */
long * heap_ids = res->ids + i * k;
float * heap_dis = res->val + i * k;
const uint8_t * qcode = qcodes + i * code_size;
if (init_finalize_heap)
maxheap_heapify (k, heap_dis, heap_ids);
const uint8_t * bcode = bcodes;
for (size_t j = 0; j < nb; j++) {
float dis = 0;
const float * tab = sdc_table.data();
for (int m = 0; m < M; m++) {
dis += tab[bcode[m] + qcode[m] * ksub]; // dis_tab [i + j * ksub] = accu;
tab += ksub * ksub;
}
if (dis < heap_dis[0]) {
maxheap_pop (k, heap_dis, heap_ids);
maxheap_push (k, heap_dis, heap_ids, dis, j);
}
bcode += code_size;
}
if (init_finalize_heap)
maxheap_reorder (k, heap_dis, heap_ids);
}
}
} // namespace faiss