diff --git a/docs/.buildinfo b/docs/.buildinfo deleted file mode 100644 index bb76a10..0000000 --- a/docs/.buildinfo +++ /dev/null @@ -1,4 +0,0 @@ -# Sphinx build info version 1 -# This file records the configuration used when building these files. When it is not found, a full rebuild will be done. -config: dc02548f7d44088906418da5bd32f45a -tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/.nojekyll b/docs/.nojekyll deleted file mode 100644 index d3f5a12..0000000 --- a/docs/.nojekyll +++ /dev/null @@ -1 +0,0 @@ - diff --git a/docs/Makefile b/docs/Makefile deleted file mode 100644 index d0c3cbf..0000000 --- a/docs/Makefile +++ /dev/null @@ -1,20 +0,0 @@ -# Minimal makefile for Sphinx documentation -# - -# You can set these variables from the command line, and also -# from the environment for the first two. -SPHINXOPTS ?= -SPHINXBUILD ?= sphinx-build -SOURCEDIR = source -BUILDDIR = build - -# Put it first so that "make" without argument is like "make help". -help: - @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) - -.PHONY: help Makefile - -# Catch-all target: route all unknown targets to Sphinx using the new -# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). -%: Makefile - @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/_sources/carte_ai.configs.rst.txt b/docs/_sources/carte_ai.configs.rst.txt deleted file mode 100644 index 79b7081..0000000 --- a/docs/_sources/carte_ai.configs.rst.txt +++ /dev/null @@ -1,45 +0,0 @@ -carte\_ai.configs package -========================= - -Submodules ----------- - -carte\_ai.configs.carte\_configs module ---------------------------------------- - -.. automodule:: carte_ai.configs.carte_configs - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.configs.directory module ----------------------------------- - -.. automodule:: carte_ai.configs.directory - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.configs.model\_parameters module ------------------------------------------- - -.. automodule:: carte_ai.configs.model_parameters - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.configs.visuailization module ---------------------------------------- - -.. automodule:: carte_ai.configs.visuailization - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: carte_ai.configs - :members: - :undoc-members: - :show-inheritance: diff --git a/docs/_sources/carte_ai.data.rst.txt b/docs/_sources/carte_ai.data.rst.txt deleted file mode 100644 index 1128259..0000000 --- a/docs/_sources/carte_ai.data.rst.txt +++ /dev/null @@ -1,21 +0,0 @@ -carte\_ai.data package -====================== - -Submodules ----------- - -carte\_ai.data.load\_data module --------------------------------- - -.. automodule:: carte_ai.data.load_data - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: carte_ai.data - :members: - :undoc-members: - :show-inheritance: diff --git a/docs/_sources/carte_ai.rst.txt b/docs/_sources/carte_ai.rst.txt deleted file mode 100644 index a017bb3..0000000 --- a/docs/_sources/carte_ai.rst.txt +++ /dev/null @@ -1,21 +0,0 @@ -carte\_ai package -================= - -Subpackages ------------ - -.. toctree:: - :maxdepth: 4 - - carte_ai.configs - carte_ai.data - carte_ai.scripts - carte_ai.src - -Module contents ---------------- - -.. automodule:: carte_ai - :members: - :undoc-members: - :show-inheritance: diff --git a/docs/_sources/carte_ai.scripts.rst.txt b/docs/_sources/carte_ai.scripts.rst.txt deleted file mode 100644 index d07fd29..0000000 --- a/docs/_sources/carte_ai.scripts.rst.txt +++ /dev/null @@ -1,53 +0,0 @@ -carte\_ai.scripts package -========================= - -Submodules ----------- - -carte\_ai.scripts.compile\_results\_singletable module ------------------------------------------------------- - -.. automodule:: carte_ai.scripts.compile_results_singletable - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.scripts.download\_data module ---------------------------------------- - -.. automodule:: carte_ai.scripts.download_data - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.scripts.evaluate\_singletable module ----------------------------------------------- - -.. automodule:: carte_ai.scripts.evaluate_singletable - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.scripts.preprocess\_lm module ---------------------------------------- - -.. automodule:: carte_ai.scripts.preprocess_lm - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.scripts.preprocess\_raw module ----------------------------------------- - -.. automodule:: carte_ai.scripts.preprocess_raw - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: carte_ai.scripts - :members: - :undoc-members: - :show-inheritance: diff --git a/docs/_sources/carte_ai.src.rst.txt b/docs/_sources/carte_ai.src.rst.txt deleted file mode 100644 index f75e266..0000000 --- a/docs/_sources/carte_ai.src.rst.txt +++ /dev/null @@ -1,85 +0,0 @@ -carte\_ai.src package -===================== - -Submodules ----------- - -carte\_ai.src.baseline\_multitable module ------------------------------------------ - -.. automodule:: carte_ai.src.baseline_multitable - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.baseline\_singletable\_nn module ----------------------------------------------- - -.. automodule:: carte_ai.src.baseline_singletable_nn - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.carte\_estimator module -------------------------------------- - -.. automodule:: carte_ai.src.carte_estimator - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.carte\_gridsearch module --------------------------------------- - -.. automodule:: carte_ai.src.carte_gridsearch - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.carte\_model module ---------------------------------- - -.. automodule:: carte_ai.src.carte_model - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.carte\_table\_to\_graph module --------------------------------------------- - -.. automodule:: carte_ai.src.carte_table_to_graph - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.evaluate\_utils module ------------------------------------- - -.. automodule:: carte_ai.src.evaluate_utils - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.preprocess\_utils module --------------------------------------- - -.. automodule:: carte_ai.src.preprocess_utils - :members: - :undoc-members: - :show-inheritance: - -carte\_ai.src.visualization\_utils module ------------------------------------------ - -.. automodule:: carte_ai.src.visualization_utils - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: carte_ai.src - :members: - :undoc-members: - :show-inheritance: diff --git a/docs/_sources/index.rst.txt b/docs/_sources/index.rst.txt deleted file mode 100644 index d23ecb7..0000000 --- a/docs/_sources/index.rst.txt +++ /dev/null @@ -1,21 +0,0 @@ -.. CARTE-AI documentation master file, created by - sphinx-quickstart on Tue Nov 12 23:54:30 2024. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - -CARTE-AI Documentation -====================== - -Welcome to the CARTE-AI documentation. This project provides a context-aware representation of table entries. - - -Contents --------- - -.. toctree:: - :maxdepth: 2 - :caption: Contents: - - modules - - diff --git a/docs/_sources/modules.rst.txt b/docs/_sources/modules.rst.txt deleted file mode 100644 index f3dcf6b..0000000 --- a/docs/_sources/modules.rst.txt +++ /dev/null @@ -1,12 +0,0 @@ -carte_ai -======== - -.. toctree:: - :maxdepth: 4 - :caption: carte_ai Modules - - carte_ai - carte_ai.configs - carte_ai.data - carte_ai.scripts - carte_ai.src \ No newline at end of file diff --git a/docs/_static/_sphinx_javascript_frameworks_compat.js b/docs/_static/_sphinx_javascript_frameworks_compat.js deleted file mode 100644 index 8141580..0000000 --- a/docs/_static/_sphinx_javascript_frameworks_compat.js +++ /dev/null @@ -1,123 +0,0 @@ -/* Compatability shim for jQuery and underscores.js. - * - * Copyright Sphinx contributors - * Released under the two clause BSD licence - */ - -/** - * small helper function to urldecode strings - * - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL - */ -jQuery.urldecode = function(x) { - if (!x) { - return x - } - return decodeURIComponent(x.replace(/\+/g, ' ')); -}; - -/** - * small helper function to urlencode strings - */ -jQuery.urlencode = encodeURIComponent; - -/** - * This function returns the parsed url parameters of the - * current request. Multiple values per key are supported, - * it will always return arrays of strings for the value parts. - */ -jQuery.getQueryParameters = function(s) { - if (typeof s === 'undefined') - s = document.location.search; - var parts = s.substr(s.indexOf('?') + 1).split('&'); - var result = {}; - for (var i = 0; i < parts.length; i++) { - var tmp = parts[i].split('=', 2); - var key = jQuery.urldecode(tmp[0]); - var value = jQuery.urldecode(tmp[1]); - if (key in result) - result[key].push(value); - else - result[key] = [value]; - } - return result; -}; - -/** - * highlight a given string on a jquery object by wrapping it in - * span elements with the given class name. - */ -jQuery.fn.highlightText = function(text, className) { - function highlight(node, addItems) { - if (node.nodeType === 3) { - var val = node.nodeValue; - var pos = val.toLowerCase().indexOf(text); - if (pos >= 0 && - !jQuery(node.parentNode).hasClass(className) && - !jQuery(node.parentNode).hasClass("nohighlight")) { - var span; - var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.className = className; - } - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - node.parentNode.insertBefore(span, node.parentNode.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling)); - node.nodeValue = val.substr(0, pos); - if (isInSVG) { - var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); - var bbox = node.parentElement.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute('class', className); - addItems.push({ - "parent": node.parentNode, - "target": rect}); - } - } - } - else if (!jQuery(node).is("button, select, textarea")) { - jQuery.each(node.childNodes, function() { - highlight(this, addItems); - }); - } - } - var addItems = []; - var result = this.each(function() { - highlight(this, addItems); - }); - for (var i = 0; i < addItems.length; ++i) { - jQuery(addItems[i].parent).before(addItems[i].target); - } - return result; -}; - -/* - * backward compatibility for jQuery.browser - * This will be supported until firefox bug is fixed. - */ -if (!jQuery.browser) { - jQuery.uaMatch = function(ua) { - ua = ua.toLowerCase(); - - var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || - /(webkit)[ \/]([\w.]+)/.exec(ua) || - /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || - /(msie) ([\w.]+)/.exec(ua) || - ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || - []; - - return { - browser: match[ 1 ] || "", - version: match[ 2 ] || "0" - }; - }; - jQuery.browser = {}; - jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; -} diff --git a/docs/_static/basic.css b/docs/_static/basic.css deleted file mode 100644 index 7ebbd6d..0000000 --- a/docs/_static/basic.css +++ /dev/null @@ -1,914 +0,0 @@ -/* - * Sphinx stylesheet -- basic theme. - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 230px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin-top: 10px; -} - -ul.search li { - padding: 5px 0; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li p.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: 360px; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -a:visited { - color: #551A8B; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, figure.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, figure.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar, -aside.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} - -nav.contents, -aside.topic, -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ - -nav.contents, -aside.topic, -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -nav.contents > :last-child, -aside.topic > :last-child, -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -nav.contents::after, -aside.topic::after, -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure, figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption, figcaption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number, -figcaption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text, -figcaption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -.sig dd { - margin-top: 0px; - margin-bottom: 0px; -} - -.sig dl { - margin-top: 0px; - margin-bottom: 0px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -.translated { - background-color: rgba(207, 255, 207, 0.2) -} - -.untranslated { - background-color: rgba(255, 207, 207, 0.2) -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class*="highlight-"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/docs/_static/css/badge_only.css b/docs/_static/css/badge_only.css deleted file mode 100644 index 88ba55b..0000000 --- a/docs/_static/css/badge_only.css +++ /dev/null @@ -1 +0,0 @@ -.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions .rst-other-versions .rtd-current-item{font-weight:700}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}#flyout-search-form{padding:6px} \ No newline at end of file diff --git a/docs/_static/css/fonts/Roboto-Slab-Bold.woff b/docs/_static/css/fonts/Roboto-Slab-Bold.woff deleted file mode 100644 index 6cb6000..0000000 Binary files a/docs/_static/css/fonts/Roboto-Slab-Bold.woff and /dev/null differ diff --git a/docs/_static/css/fonts/Roboto-Slab-Bold.woff2 b/docs/_static/css/fonts/Roboto-Slab-Bold.woff2 deleted file mode 100644 index 7059e23..0000000 Binary files a/docs/_static/css/fonts/Roboto-Slab-Bold.woff2 and /dev/null differ diff --git a/docs/_static/css/fonts/Roboto-Slab-Regular.woff b/docs/_static/css/fonts/Roboto-Slab-Regular.woff deleted file mode 100644 index f815f63..0000000 Binary files a/docs/_static/css/fonts/Roboto-Slab-Regular.woff and /dev/null differ diff --git a/docs/_static/css/fonts/Roboto-Slab-Regular.woff2 b/docs/_static/css/fonts/Roboto-Slab-Regular.woff2 deleted file mode 100644 index f2c76e5..0000000 Binary files a/docs/_static/css/fonts/Roboto-Slab-Regular.woff2 and /dev/null differ diff --git a/docs/_static/css/fonts/fontawesome-webfont.eot b/docs/_static/css/fonts/fontawesome-webfont.eot deleted file mode 100644 index e9f60ca..0000000 Binary files a/docs/_static/css/fonts/fontawesome-webfont.eot and /dev/null differ diff --git a/docs/_static/css/fonts/fontawesome-webfont.svg b/docs/_static/css/fonts/fontawesome-webfont.svg deleted file mode 100644 index 855c845..0000000 --- a/docs/_static/css/fonts/fontawesome-webfont.svg +++ /dev/null @@ -1,2671 +0,0 @@ - - - - -Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 - By ,,, -Copyright Dave Gandy 2016. All rights reserved. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/docs/_static/css/fonts/fontawesome-webfont.ttf b/docs/_static/css/fonts/fontawesome-webfont.ttf deleted file mode 100644 index 35acda2..0000000 Binary files a/docs/_static/css/fonts/fontawesome-webfont.ttf and /dev/null differ diff --git a/docs/_static/css/fonts/fontawesome-webfont.woff b/docs/_static/css/fonts/fontawesome-webfont.woff deleted file mode 100644 index 400014a..0000000 Binary files a/docs/_static/css/fonts/fontawesome-webfont.woff and /dev/null differ diff --git a/docs/_static/css/fonts/fontawesome-webfont.woff2 b/docs/_static/css/fonts/fontawesome-webfont.woff2 deleted file mode 100644 index 4d13fc6..0000000 Binary files a/docs/_static/css/fonts/fontawesome-webfont.woff2 and /dev/null differ diff --git a/docs/_static/css/fonts/lato-bold-italic.woff b/docs/_static/css/fonts/lato-bold-italic.woff deleted file mode 100644 index 88ad05b..0000000 Binary files a/docs/_static/css/fonts/lato-bold-italic.woff and /dev/null differ diff --git a/docs/_static/css/fonts/lato-bold-italic.woff2 b/docs/_static/css/fonts/lato-bold-italic.woff2 deleted file mode 100644 index c4e3d80..0000000 Binary files a/docs/_static/css/fonts/lato-bold-italic.woff2 and /dev/null differ diff --git a/docs/_static/css/fonts/lato-bold.woff b/docs/_static/css/fonts/lato-bold.woff deleted file mode 100644 index c6dff51..0000000 Binary files a/docs/_static/css/fonts/lato-bold.woff and /dev/null differ diff --git a/docs/_static/css/fonts/lato-bold.woff2 b/docs/_static/css/fonts/lato-bold.woff2 deleted file mode 100644 index bb19504..0000000 Binary files a/docs/_static/css/fonts/lato-bold.woff2 and /dev/null differ diff --git a/docs/_static/css/fonts/lato-normal-italic.woff b/docs/_static/css/fonts/lato-normal-italic.woff deleted file mode 100644 index 76114bc..0000000 Binary files a/docs/_static/css/fonts/lato-normal-italic.woff and /dev/null differ diff --git a/docs/_static/css/fonts/lato-normal-italic.woff2 b/docs/_static/css/fonts/lato-normal-italic.woff2 deleted file mode 100644 index 3404f37..0000000 Binary files a/docs/_static/css/fonts/lato-normal-italic.woff2 and /dev/null differ diff --git a/docs/_static/css/fonts/lato-normal.woff b/docs/_static/css/fonts/lato-normal.woff deleted file mode 100644 index ae1307f..0000000 Binary files a/docs/_static/css/fonts/lato-normal.woff and /dev/null differ diff --git a/docs/_static/css/fonts/lato-normal.woff2 b/docs/_static/css/fonts/lato-normal.woff2 deleted file mode 100644 index 3bf9843..0000000 Binary files a/docs/_static/css/fonts/lato-normal.woff2 and /dev/null differ diff --git a/docs/_static/css/theme.css b/docs/_static/css/theme.css deleted file mode 100644 index 0f14f10..0000000 --- a/docs/_static/css/theme.css +++ /dev/null @@ -1,4 +0,0 @@ -html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! - * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome - * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) - */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search .wy-dropdown>aactive,.wy-side-nav-search .wy-dropdown>afocus,.wy-side-nav-search>a:hover,.wy-side-nav-search>aactive,.wy-side-nav-search>afocus{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon,.wy-side-nav-search>a.icon{display:block}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.switch-menus{position:relative;display:block;margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-side-nav-search>div.switch-menus>div.language-switch,.wy-side-nav-search>div.switch-menus>div.version-switch{display:inline-block;padding:.2em}.wy-side-nav-search>div.switch-menus>div.language-switch select,.wy-side-nav-search>div.switch-menus>div.version-switch select{display:inline-block;margin-right:-2rem;padding-right:2rem;max-width:240px;text-align-last:center;background:none;border:none;border-radius:0;box-shadow:none;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-size:1em;font-weight:400;color:hsla(0,0%,100%,.3);cursor:pointer;appearance:none;-webkit-appearance:none;-moz-appearance:none}.wy-side-nav-search>div.switch-menus>div.language-switch select:active,.wy-side-nav-search>div.switch-menus>div.language-switch select:focus,.wy-side-nav-search>div.switch-menus>div.language-switch select:hover,.wy-side-nav-search>div.switch-menus>div.version-switch select:active,.wy-side-nav-search>div.switch-menus>div.version-switch select:focus,.wy-side-nav-search>div.switch-menus>div.version-switch select:hover{background:hsla(0,0%,100%,.1);color:hsla(0,0%,100%,.5)}.wy-side-nav-search>div.switch-menus>div.language-switch select option,.wy-side-nav-search>div.switch-menus>div.version-switch select option{color:#000}.wy-side-nav-search>div.switch-menus>div.language-switch:has(>select):after,.wy-side-nav-search>div.switch-menus>div.version-switch:has(>select):after{display:inline-block;width:1.5em;height:100%;padding:.1em;content:"\f0d7";font-size:1em;line-height:1.2em;font-family:FontAwesome;text-align:center;pointer-events:none;box-sizing:border-box}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions .rst-other-versions .rtd-current-item{font-weight:700}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}#flyout-search-form{padding:6px}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/docs/_static/data_wina.png b/docs/_static/data_wina.png deleted file mode 100644 index da3f392..0000000 Binary files a/docs/_static/data_wina.png and /dev/null differ diff --git a/docs/_static/doctools.js b/docs/_static/doctools.js deleted file mode 100644 index 0398ebb..0000000 --- a/docs/_static/doctools.js +++ /dev/null @@ -1,149 +0,0 @@ -/* - * Base JavaScript utilities for all Sphinx HTML documentation. - */ -"use strict"; - -const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ - "TEXTAREA", - "INPUT", - "SELECT", - "BUTTON", -]); - -const _ready = (callback) => { - if (document.readyState !== "loading") { - callback(); - } else { - document.addEventListener("DOMContentLoaded", callback); - } -}; - -/** - * Small JavaScript module for the documentation. - */ -const Documentation = { - init: () => { - Documentation.initDomainIndexTable(); - Documentation.initOnKeyListeners(); - }, - - /** - * i18n support - */ - TRANSLATIONS: {}, - PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), - LOCALE: "unknown", - - // gettext and ngettext don't access this so that the functions - // can safely bound to a different name (_ = Documentation.gettext) - gettext: (string) => { - const translated = Documentation.TRANSLATIONS[string]; - switch (typeof translated) { - case "undefined": - return string; // no translation - case "string": - return translated; // translation exists - default: - return translated[0]; // (singular, plural) translation tuple exists - } - }, - - ngettext: (singular, plural, n) => { - const translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated !== "undefined") - return translated[Documentation.PLURAL_EXPR(n)]; - return n === 1 ? singular : plural; - }, - - addTranslations: (catalog) => { - Object.assign(Documentation.TRANSLATIONS, catalog.messages); - Documentation.PLURAL_EXPR = new Function( - "n", - `return (${catalog.plural_expr})` - ); - Documentation.LOCALE = catalog.locale; - }, - - /** - * helper function to focus on search bar - */ - focusSearchBar: () => { - document.querySelectorAll("input[name=q]")[0]?.focus(); - }, - - /** - * Initialise the domain index toggle buttons - */ - initDomainIndexTable: () => { - const toggler = (el) => { - const idNumber = el.id.substr(7); - const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); - if (el.src.substr(-9) === "minus.png") { - el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; - toggledRows.forEach((el) => (el.style.display = "none")); - } else { - el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; - toggledRows.forEach((el) => (el.style.display = "")); - } - }; - - const togglerElements = document.querySelectorAll("img.toggler"); - togglerElements.forEach((el) => - el.addEventListener("click", (event) => toggler(event.currentTarget)) - ); - togglerElements.forEach((el) => (el.style.display = "")); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); - }, - - initOnKeyListeners: () => { - // only install a listener if it is really needed - if ( - !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS - ) - return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.altKey || event.ctrlKey || event.metaKey) return; - - if (!event.shiftKey) { - switch (event.key) { - case "ArrowLeft": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const prevLink = document.querySelector('link[rel="prev"]'); - if (prevLink && prevLink.href) { - window.location.href = prevLink.href; - event.preventDefault(); - } - break; - case "ArrowRight": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const nextLink = document.querySelector('link[rel="next"]'); - if (nextLink && nextLink.href) { - window.location.href = nextLink.href; - event.preventDefault(); - } - break; - } - } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case "/": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.focusSearchBar(); - event.preventDefault(); - } - }); - }, -}; - -// quick alias for translations -const _ = Documentation.gettext; - -_ready(Documentation.init); diff --git a/docs/_static/documentation_options.js b/docs/_static/documentation_options.js deleted file mode 100644 index 89435bb..0000000 --- a/docs/_static/documentation_options.js +++ /dev/null @@ -1,13 +0,0 @@ -const DOCUMENTATION_OPTIONS = { - VERSION: '1.0.0', - LANGUAGE: 'en', - COLLAPSE_INDEX: false, - BUILDER: 'html', - FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', - HAS_SOURCE: true, - SOURCELINK_SUFFIX: '.txt', - NAVIGATION_WITH_KEYS: false, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: true, -}; \ No newline at end of file diff --git a/docs/_static/file.png b/docs/_static/file.png deleted file mode 100644 index a858a41..0000000 Binary files a/docs/_static/file.png and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bold.eot b/docs/_static/fonts/Lato/lato-bold.eot deleted file mode 100644 index 3361183..0000000 Binary files a/docs/_static/fonts/Lato/lato-bold.eot and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bold.ttf b/docs/_static/fonts/Lato/lato-bold.ttf deleted file mode 100644 index 29f691d..0000000 Binary files a/docs/_static/fonts/Lato/lato-bold.ttf and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bold.woff b/docs/_static/fonts/Lato/lato-bold.woff deleted file mode 100644 index c6dff51..0000000 Binary files a/docs/_static/fonts/Lato/lato-bold.woff and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bold.woff2 b/docs/_static/fonts/Lato/lato-bold.woff2 deleted file mode 100644 index bb19504..0000000 Binary files a/docs/_static/fonts/Lato/lato-bold.woff2 and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bolditalic.eot b/docs/_static/fonts/Lato/lato-bolditalic.eot deleted file mode 100644 index 3d41549..0000000 Binary files a/docs/_static/fonts/Lato/lato-bolditalic.eot and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bolditalic.ttf b/docs/_static/fonts/Lato/lato-bolditalic.ttf deleted file mode 100644 index f402040..0000000 Binary files a/docs/_static/fonts/Lato/lato-bolditalic.ttf and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bolditalic.woff b/docs/_static/fonts/Lato/lato-bolditalic.woff deleted file mode 100644 index 88ad05b..0000000 Binary files a/docs/_static/fonts/Lato/lato-bolditalic.woff and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-bolditalic.woff2 b/docs/_static/fonts/Lato/lato-bolditalic.woff2 deleted file mode 100644 index c4e3d80..0000000 Binary files a/docs/_static/fonts/Lato/lato-bolditalic.woff2 and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-italic.eot b/docs/_static/fonts/Lato/lato-italic.eot deleted file mode 100644 index 3f82642..0000000 Binary files a/docs/_static/fonts/Lato/lato-italic.eot and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-italic.ttf b/docs/_static/fonts/Lato/lato-italic.ttf deleted file mode 100644 index b4bfc9b..0000000 Binary files a/docs/_static/fonts/Lato/lato-italic.ttf and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-italic.woff b/docs/_static/fonts/Lato/lato-italic.woff deleted file mode 100644 index 76114bc..0000000 Binary files a/docs/_static/fonts/Lato/lato-italic.woff and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-italic.woff2 b/docs/_static/fonts/Lato/lato-italic.woff2 deleted file mode 100644 index 3404f37..0000000 Binary files a/docs/_static/fonts/Lato/lato-italic.woff2 and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-regular.eot b/docs/_static/fonts/Lato/lato-regular.eot deleted file mode 100644 index 11e3f2a..0000000 Binary files a/docs/_static/fonts/Lato/lato-regular.eot and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-regular.ttf b/docs/_static/fonts/Lato/lato-regular.ttf deleted file mode 100644 index 74decd9..0000000 Binary files a/docs/_static/fonts/Lato/lato-regular.ttf and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-regular.woff b/docs/_static/fonts/Lato/lato-regular.woff deleted file mode 100644 index ae1307f..0000000 Binary files a/docs/_static/fonts/Lato/lato-regular.woff and /dev/null differ diff --git a/docs/_static/fonts/Lato/lato-regular.woff2 b/docs/_static/fonts/Lato/lato-regular.woff2 deleted file mode 100644 index 3bf9843..0000000 Binary files a/docs/_static/fonts/Lato/lato-regular.woff2 and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot deleted file mode 100644 index 79dc8ef..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf deleted file mode 100644 index df5d1df..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff deleted file mode 100644 index 6cb6000..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 deleted file mode 100644 index 7059e23..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot deleted file mode 100644 index 2f7ca78..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf deleted file mode 100644 index eb52a79..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff deleted file mode 100644 index f815f63..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff and /dev/null differ diff --git a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 b/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 deleted file mode 100644 index f2c76e5..0000000 Binary files a/docs/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 and /dev/null differ diff --git a/docs/_static/jquery.js b/docs/_static/jquery.js deleted file mode 100644 index c4c6022..0000000 --- a/docs/_static/jquery.js +++ /dev/null @@ -1,2 +0,0 @@ -/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ -!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t -
Languages
- ${config.projects.translations - .map( - (translation) => ` -
- ${translation.language.code} -
- `, - ) - .join("\n")} - - `; - return languagesHTML; - } - - function renderVersions(config) { - if (!config.versions.active.length) { - return ""; - } - const versionsHTML = ` -
-
Versions
- ${config.versions.active - .map( - (version) => ` -
- ${version.slug} -
- `, - ) - .join("\n")} -
- `; - return versionsHTML; - } - - function renderDownloads(config) { - if (!Object.keys(config.versions.current.downloads).length) { - return ""; - } - const downloadsNameDisplay = { - pdf: "PDF", - epub: "Epub", - htmlzip: "HTML", - }; - - const downloadsHTML = ` -
-
Downloads
- ${Object.entries(config.versions.current.downloads) - .map( - ([name, url]) => ` -
- ${downloadsNameDisplay[name]} -
- `, - ) - .join("\n")} -
- `; - return downloadsHTML; - } - - document.addEventListener("readthedocs-addons-data-ready", function (event) { - const config = event.detail.data(); - - const flyout = ` -
- - Read the Docs - v: ${config.versions.current.slug} - - -
-
- ${renderLanguages(config)} - ${renderVersions(config)} - ${renderDownloads(config)} -
-
On Read the Docs
-
- Project Home -
-
- Builds -
-
- Downloads -
-
-
-
Search
-
-
- -
-
-
-
- - Hosted by Read the Docs - -
-
- `; - - // Inject the generated flyout into the body HTML element. - document.body.insertAdjacentHTML("beforeend", flyout); - - // Trigger the Read the Docs Addons Search modal when clicking on the "Search docs" input from inside the flyout. - document - .querySelector("#flyout-search-form") - .addEventListener("focusin", () => { - const event = new CustomEvent("readthedocs-search-show"); - document.dispatchEvent(event); - }); - }) -} - -if (themeLanguageSelector || themeVersionSelector) { - function onSelectorSwitch(event) { - const option = event.target.selectedIndex; - const item = event.target.options[option]; - window.location.href = item.dataset.url; - } - - document.addEventListener("readthedocs-addons-data-ready", function (event) { - const config = event.detail.data(); - - const versionSwitch = document.querySelector( - "div.switch-menus > div.version-switch", - ); - if (themeVersionSelector) { - let versions = config.versions.active; - if (config.versions.current.hidden || config.versions.current.type === "external") { - versions.unshift(config.versions.current); - } - const versionSelect = ` - - `; - - versionSwitch.innerHTML = versionSelect; - versionSwitch.firstElementChild.addEventListener("change", onSelectorSwitch); - } - - const languageSwitch = document.querySelector( - "div.switch-menus > div.language-switch", - ); - - if (themeLanguageSelector) { - if (config.projects.translations.length) { - // Add the current language to the options on the selector - let languages = config.projects.translations.concat( - config.projects.current, - ); - languages = languages.sort((a, b) => - a.language.name.localeCompare(b.language.name), - ); - - const languageSelect = ` - - `; - - languageSwitch.innerHTML = languageSelect; - languageSwitch.firstElementChild.addEventListener("change", onSelectorSwitch); - } - else { - languageSwitch.remove(); - } - } - }); -} - -document.addEventListener("readthedocs-addons-data-ready", function (event) { - // Trigger the Read the Docs Addons Search modal when clicking on "Search docs" input from the topnav. - document - .querySelector("[role='search'] input") - .addEventListener("focusin", () => { - const event = new CustomEvent("readthedocs-search-show"); - document.dispatchEvent(event); - }); -}); \ No newline at end of file diff --git a/docs/_static/language_data.js b/docs/_static/language_data.js deleted file mode 100644 index c7fe6c6..0000000 --- a/docs/_static/language_data.js +++ /dev/null @@ -1,192 +0,0 @@ -/* - * This script contains the language-specific data used by searchtools.js, - * namely the list of stopwords, stemmer, scorer and splitter. - */ - -var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; - - -/* Non-minified version is copied as a separate JS file, if available */ - -/** - * Porter Stemmer - */ -var Stemmer = function() { - - var step2list = { - ational: 'ate', - tional: 'tion', - enci: 'ence', - anci: 'ance', - izer: 'ize', - bli: 'ble', - alli: 'al', - entli: 'ent', - eli: 'e', - ousli: 'ous', - ization: 'ize', - ation: 'ate', - ator: 'ate', - alism: 'al', - iveness: 'ive', - fulness: 'ful', - ousness: 'ous', - aliti: 'al', - iviti: 'ive', - biliti: 'ble', - logi: 'log' - }; - - var step3list = { - icate: 'ic', - ative: '', - alize: 'al', - iciti: 'ic', - ical: 'ic', - ful: '', - ness: '' - }; - - var c = "[^aeiou]"; // consonant - var v = "[aeiouy]"; // vowel - var C = c + "[^aeiouy]*"; // consonant sequence - var V = v + "[aeiou]*"; // vowel sequence - - var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 - var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 - var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 - var s_v = "^(" + C + ")?" + v; // vowel in stem - - this.stemWord = function (w) { - var stem; - var suffix; - var firstch; - var origword = w; - - if (w.length < 3) - return w; - - var re; - var re2; - var re3; - var re4; - - firstch = w.substr(0,1); - if (firstch == "y") - w = firstch.toUpperCase() + w.substr(1); - - // Step 1a - re = /^(.+?)(ss|i)es$/; - re2 = /^(.+?)([^s])s$/; - - if (re.test(w)) - w = w.replace(re,"$1$2"); - else if (re2.test(w)) - w = w.replace(re2,"$1$2"); - - // Step 1b - re = /^(.+?)eed$/; - re2 = /^(.+?)(ed|ing)$/; - if (re.test(w)) { - var fp = re.exec(w); - re = new RegExp(mgr0); - if (re.test(fp[1])) { - re = /.$/; - w = w.replace(re,""); - } - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1]; - re2 = new RegExp(s_v); - if (re2.test(stem)) { - w = stem; - re2 = /(at|bl|iz)$/; - re3 = new RegExp("([^aeiouylsz])\\1$"); - re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re2.test(w)) - w = w + "e"; - else if (re3.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - else if (re4.test(w)) - w = w + "e"; - } - } - - // Step 1c - re = /^(.+?)y$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(s_v); - if (re.test(stem)) - w = stem + "i"; - } - - // Step 2 - re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step2list[suffix]; - } - - // Step 3 - re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step3list[suffix]; - } - - // Step 4 - re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; - re2 = /^(.+?)(s|t)(ion)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - if (re.test(stem)) - w = stem; - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1] + fp[2]; - re2 = new RegExp(mgr1); - if (re2.test(stem)) - w = stem; - } - - // Step 5 - re = /^(.+?)e$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - re2 = new RegExp(meq1); - re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) - w = stem; - } - re = /ll$/; - re2 = new RegExp(mgr1); - if (re.test(w) && re2.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - - // and turn initial Y back to y - if (firstch == "y") - w = firstch.toLowerCase() + w.substr(1); - return w; - } -} - diff --git a/docs/_static/minus.png b/docs/_static/minus.png deleted file mode 100644 index d96755f..0000000 Binary files a/docs/_static/minus.png and /dev/null differ diff --git a/docs/_static/outline_carte.jpg b/docs/_static/outline_carte.jpg deleted file mode 100644 index e7e8f7a..0000000 Binary files a/docs/_static/outline_carte.jpg and /dev/null differ diff --git a/docs/_static/performance.png b/docs/_static/performance.png deleted file mode 100644 index 2188c3b..0000000 Binary files a/docs/_static/performance.png and /dev/null differ diff --git a/docs/_static/plus.png b/docs/_static/plus.png deleted file mode 100644 index 7107cec..0000000 Binary files a/docs/_static/plus.png and /dev/null differ diff --git a/docs/_static/pygments.css b/docs/_static/pygments.css deleted file mode 100644 index 84ab303..0000000 --- a/docs/_static/pygments.css +++ /dev/null @@ -1,75 +0,0 @@ -pre { line-height: 125%; } -td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -.highlight .hll { background-color: #ffffcc } -.highlight { background: #f8f8f8; } -.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ -.highlight .err { border: 1px solid #FF0000 } /* Error */ -.highlight .k { color: #008000; font-weight: bold } /* Keyword */ -.highlight .o { color: #666666 } /* Operator */ -.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ -.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ -.highlight .cp { color: #9C6500 } /* Comment.Preproc */ -.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ -.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ -.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ -.highlight .gd { color: #A00000 } /* Generic.Deleted */ -.highlight .ge { font-style: italic } /* Generic.Emph */ -.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ -.highlight .gr { color: #E40000 } /* Generic.Error */ -.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ -.highlight .gi { color: #008400 } /* Generic.Inserted */ -.highlight .go { color: #717171 } /* Generic.Output */ -.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ -.highlight .gs { font-weight: bold } /* Generic.Strong */ -.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ -.highlight .gt { color: #0044DD } /* Generic.Traceback */ -.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ -.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ -.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ -.highlight .kp { color: #008000 } /* Keyword.Pseudo */ -.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ -.highlight .kt { color: #B00040 } /* Keyword.Type */ -.highlight .m { color: #666666 } /* Literal.Number */ -.highlight .s { color: #BA2121 } /* Literal.String */ -.highlight .na { color: #687822 } /* Name.Attribute */ -.highlight .nb { color: #008000 } /* Name.Builtin */ -.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ -.highlight .no { color: #880000 } /* Name.Constant */ -.highlight .nd { color: #AA22FF } /* Name.Decorator */ -.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ -.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ -.highlight .nf { color: #0000FF } /* Name.Function */ -.highlight .nl { color: #767600 } /* Name.Label */ -.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ -.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ -.highlight .nv { color: #19177C } /* Name.Variable */ -.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ -.highlight .w { color: #bbbbbb } /* Text.Whitespace */ -.highlight .mb { color: #666666 } /* Literal.Number.Bin */ -.highlight .mf { color: #666666 } /* Literal.Number.Float */ -.highlight .mh { color: #666666 } /* Literal.Number.Hex */ -.highlight .mi { color: #666666 } /* Literal.Number.Integer */ -.highlight .mo { color: #666666 } /* Literal.Number.Oct */ -.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ -.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ -.highlight .sc { color: #BA2121 } /* Literal.String.Char */ -.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ -.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ -.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ -.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ -.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ -.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ -.highlight .sx { color: #008000 } /* Literal.String.Other */ -.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ -.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ -.highlight .ss { color: #19177C } /* Literal.String.Symbol */ -.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ -.highlight .fm { color: #0000FF } /* Name.Function.Magic */ -.highlight .vc { color: #19177C } /* Name.Variable.Class */ -.highlight .vg { color: #19177C } /* Name.Variable.Global */ -.highlight .vi { color: #19177C } /* Name.Variable.Instance */ -.highlight .vm { color: #19177C } /* Name.Variable.Magic */ -.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/_static/searchtools.js b/docs/_static/searchtools.js deleted file mode 100644 index 2c774d1..0000000 --- a/docs/_static/searchtools.js +++ /dev/null @@ -1,632 +0,0 @@ -/* - * Sphinx JavaScript utilities for the full-text search. - */ -"use strict"; - -/** - * Simple result scoring code. - */ -if (typeof Scorer === "undefined") { - var Scorer = { - // Implement the following function to further tweak the score for each result - // The function takes a result array [docname, title, anchor, descr, score, filename] - // and returns the new score. - /* - score: result => { - const [docname, title, anchor, descr, score, filename, kind] = result - return score - }, - */ - - // query matches the full name of an object - objNameMatch: 11, - // or matches in the last dotted part of the object name - objPartialMatch: 6, - // Additive scores depending on the priority of the object - objPrio: { - 0: 15, // used to be importantResults - 1: 5, // used to be objectResults - 2: -5, // used to be unimportantResults - }, - // Used when the priority is not in the mapping. - objPrioDefault: 0, - - // query found in title - title: 15, - partialTitle: 7, - // query found in terms - term: 5, - partialTerm: 2, - }; -} - -// Global search result kind enum, used by themes to style search results. -class SearchResultKind { - static get index() { return "index"; } - static get object() { return "object"; } - static get text() { return "text"; } - static get title() { return "title"; } -} - -const _removeChildren = (element) => { - while (element && element.lastChild) element.removeChild(element.lastChild); -}; - -/** - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping - */ -const _escapeRegExp = (string) => - string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string - -const _displayItem = (item, searchTerms, highlightTerms) => { - const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; - const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; - const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; - const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; - const contentRoot = document.documentElement.dataset.content_root; - - const [docName, title, anchor, descr, score, _filename, kind] = item; - - let listItem = document.createElement("li"); - // Add a class representing the item's type: - // can be used by a theme's CSS selector for styling - // See SearchResultKind for the class names. - listItem.classList.add(`kind-${kind}`); - let requestUrl; - let linkUrl; - if (docBuilder === "dirhtml") { - // dirhtml builder - let dirname = docName + "/"; - if (dirname.match(/\/index\/$/)) - dirname = dirname.substring(0, dirname.length - 6); - else if (dirname === "index/") dirname = ""; - requestUrl = contentRoot + dirname; - linkUrl = requestUrl; - } else { - // normal html builders - requestUrl = contentRoot + docName + docFileSuffix; - linkUrl = docName + docLinkSuffix; - } - let linkEl = listItem.appendChild(document.createElement("a")); - linkEl.href = linkUrl + anchor; - linkEl.dataset.score = score; - linkEl.innerHTML = title; - if (descr) { - listItem.appendChild(document.createElement("span")).innerHTML = - " (" + descr + ")"; - // highlight search terms in the description - if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js - highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); - } - else if (showSearchSummary) - fetch(requestUrl) - .then((responseData) => responseData.text()) - .then((data) => { - if (data) - listItem.appendChild( - Search.makeSearchSummary(data, searchTerms, anchor) - ); - // highlight search terms in the summary - if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js - highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); - }); - Search.output.appendChild(listItem); -}; -const _finishSearch = (resultCount) => { - Search.stopPulse(); - Search.title.innerText = _("Search Results"); - if (!resultCount) - Search.status.innerText = Documentation.gettext( - "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." - ); - else - Search.status.innerText = Documentation.ngettext( - "Search finished, found one page matching the search query.", - "Search finished, found ${resultCount} pages matching the search query.", - resultCount, - ).replace('${resultCount}', resultCount); -}; -const _displayNextItem = ( - results, - resultCount, - searchTerms, - highlightTerms, -) => { - // results left, load the summary and display it - // this is intended to be dynamic (don't sub resultsCount) - if (results.length) { - _displayItem(results.pop(), searchTerms, highlightTerms); - setTimeout( - () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), - 5 - ); - } - // search finished, update title and status message - else _finishSearch(resultCount); -}; -// Helper function used by query() to order search results. -// Each input is an array of [docname, title, anchor, descr, score, filename, kind]. -// Order the results by score (in opposite order of appearance, since the -// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. -const _orderResultsByScoreThenName = (a, b) => { - const leftScore = a[4]; - const rightScore = b[4]; - if (leftScore === rightScore) { - // same score: sort alphabetically - const leftTitle = a[1].toLowerCase(); - const rightTitle = b[1].toLowerCase(); - if (leftTitle === rightTitle) return 0; - return leftTitle > rightTitle ? -1 : 1; // inverted is intentional - } - return leftScore > rightScore ? 1 : -1; -}; - -/** - * Default splitQuery function. Can be overridden in ``sphinx.search`` with a - * custom function per language. - * - * The regular expression works by splitting the string on consecutive characters - * that are not Unicode letters, numbers, underscores, or emoji characters. - * This is the same as ``\W+`` in Python, preserving the surrogate pair area. - */ -if (typeof splitQuery === "undefined") { - var splitQuery = (query) => query - .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) - .filter(term => term) // remove remaining empty strings -} - -/** - * Search Module - */ -const Search = { - _index: null, - _queued_query: null, - _pulse_status: -1, - - htmlToText: (htmlString, anchor) => { - const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); - for (const removalQuery of [".headerlink", "script", "style"]) { - htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() }); - } - if (anchor) { - const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`); - if (anchorContent) return anchorContent.textContent; - - console.warn( - `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.` - ); - } - - // if anchor not specified or not found, fall back to main content - const docContent = htmlElement.querySelector('[role="main"]'); - if (docContent) return docContent.textContent; - - console.warn( - "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template." - ); - return ""; - }, - - init: () => { - const query = new URLSearchParams(window.location.search).get("q"); - document - .querySelectorAll('input[name="q"]') - .forEach((el) => (el.value = query)); - if (query) Search.performSearch(query); - }, - - loadIndex: (url) => - (document.body.appendChild(document.createElement("script")).src = url), - - setIndex: (index) => { - Search._index = index; - if (Search._queued_query !== null) { - const query = Search._queued_query; - Search._queued_query = null; - Search.query(query); - } - }, - - hasIndex: () => Search._index !== null, - - deferQuery: (query) => (Search._queued_query = query), - - stopPulse: () => (Search._pulse_status = -1), - - startPulse: () => { - if (Search._pulse_status >= 0) return; - - const pulse = () => { - Search._pulse_status = (Search._pulse_status + 1) % 4; - Search.dots.innerText = ".".repeat(Search._pulse_status); - if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); - }; - pulse(); - }, - - /** - * perform a search for something (or wait until index is loaded) - */ - performSearch: (query) => { - // create the required interface elements - const searchText = document.createElement("h2"); - searchText.textContent = _("Searching"); - const searchSummary = document.createElement("p"); - searchSummary.classList.add("search-summary"); - searchSummary.innerText = ""; - const searchList = document.createElement("ul"); - searchList.setAttribute("role", "list"); - searchList.classList.add("search"); - - const out = document.getElementById("search-results"); - Search.title = out.appendChild(searchText); - Search.dots = Search.title.appendChild(document.createElement("span")); - Search.status = out.appendChild(searchSummary); - Search.output = out.appendChild(searchList); - - const searchProgress = document.getElementById("search-progress"); - // Some themes don't use the search progress node - if (searchProgress) { - searchProgress.innerText = _("Preparing search..."); - } - Search.startPulse(); - - // index already loaded, the browser was quick! - if (Search.hasIndex()) Search.query(query); - else Search.deferQuery(query); - }, - - _parseQuery: (query) => { - // stem the search terms and add them to the correct list - const stemmer = new Stemmer(); - const searchTerms = new Set(); - const excludedTerms = new Set(); - const highlightTerms = new Set(); - const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); - splitQuery(query.trim()).forEach((queryTerm) => { - const queryTermLower = queryTerm.toLowerCase(); - - // maybe skip this "word" - // stopwords array is from language_data.js - if ( - stopwords.indexOf(queryTermLower) !== -1 || - queryTerm.match(/^\d+$/) - ) - return; - - // stem the word - let word = stemmer.stemWord(queryTermLower); - // select the correct list - if (word[0] === "-") excludedTerms.add(word.substr(1)); - else { - searchTerms.add(word); - highlightTerms.add(queryTermLower); - } - }); - - if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js - localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) - } - - // console.debug("SEARCH: searching for:"); - // console.info("required: ", [...searchTerms]); - // console.info("excluded: ", [...excludedTerms]); - - return [query, searchTerms, excludedTerms, highlightTerms, objectTerms]; - }, - - /** - * execute search (requires search index to be loaded) - */ - _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const titles = Search._index.titles; - const allTitles = Search._index.alltitles; - const indexEntries = Search._index.indexentries; - - // Collect multiple result groups to be sorted separately and then ordered. - // Each is an array of [docname, title, anchor, descr, score, filename, kind]. - const normalResults = []; - const nonMainIndexResults = []; - - _removeChildren(document.getElementById("search-progress")); - - const queryLower = query.toLowerCase().trim(); - for (const [title, foundTitles] of Object.entries(allTitles)) { - if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { - for (const [file, id] of foundTitles) { - const score = Math.round(Scorer.title * queryLower.length / title.length); - const boost = titles[file] === title ? 1 : 0; // add a boost for document titles - normalResults.push([ - docNames[file], - titles[file] !== title ? `${titles[file]} > ${title}` : title, - id !== null ? "#" + id : "", - null, - score + boost, - filenames[file], - SearchResultKind.title, - ]); - } - } - } - - // search for explicit entries in index directives - for (const [entry, foundEntries] of Object.entries(indexEntries)) { - if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { - for (const [file, id, isMain] of foundEntries) { - const score = Math.round(100 * queryLower.length / entry.length); - const result = [ - docNames[file], - titles[file], - id ? "#" + id : "", - null, - score, - filenames[file], - SearchResultKind.index, - ]; - if (isMain) { - normalResults.push(result); - } else { - nonMainIndexResults.push(result); - } - } - } - } - - // lookup as object - objectTerms.forEach((term) => - normalResults.push(...Search.performObjectSearch(term, objectTerms)) - ); - - // lookup as search terms in fulltext - normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms)); - - // let the scorer override scores with a custom scoring function - if (Scorer.score) { - normalResults.forEach((item) => (item[4] = Scorer.score(item))); - nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item))); - } - - // Sort each group of results by score and then alphabetically by name. - normalResults.sort(_orderResultsByScoreThenName); - nonMainIndexResults.sort(_orderResultsByScoreThenName); - - // Combine the result groups in (reverse) order. - // Non-main index entries are typically arbitrary cross-references, - // so display them after other results. - let results = [...nonMainIndexResults, ...normalResults]; - - // remove duplicate search results - // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept - let seen = new Set(); - results = results.reverse().reduce((acc, result) => { - let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); - if (!seen.has(resultStr)) { - acc.push(result); - seen.add(resultStr); - } - return acc; - }, []); - - return results.reverse(); - }, - - query: (query) => { - const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query); - const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms); - - // for debugging - //Search.lastresults = results.slice(); // a copy - // console.info("search results:", Search.lastresults); - - // print the results - _displayNextItem(results, results.length, searchTerms, highlightTerms); - }, - - /** - * search for object names - */ - performObjectSearch: (object, objectTerms) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const objects = Search._index.objects; - const objNames = Search._index.objnames; - const titles = Search._index.titles; - - const results = []; - - const objectSearchCallback = (prefix, match) => { - const name = match[4] - const fullname = (prefix ? prefix + "." : "") + name; - const fullnameLower = fullname.toLowerCase(); - if (fullnameLower.indexOf(object) < 0) return; - - let score = 0; - const parts = fullnameLower.split("."); - - // check for different match types: exact matches of full name or - // "last name" (i.e. last dotted part) - if (fullnameLower === object || parts.slice(-1)[0] === object) - score += Scorer.objNameMatch; - else if (parts.slice(-1)[0].indexOf(object) > -1) - score += Scorer.objPartialMatch; // matches in last name - - const objName = objNames[match[1]][2]; - const title = titles[match[0]]; - - // If more than one term searched for, we require other words to be - // found in the name/title/description - const otherTerms = new Set(objectTerms); - otherTerms.delete(object); - if (otherTerms.size > 0) { - const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); - if ( - [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) - ) - return; - } - - let anchor = match[3]; - if (anchor === "") anchor = fullname; - else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; - - const descr = objName + _(", in ") + title; - - // add custom score for some objects according to scorer - if (Scorer.objPrio.hasOwnProperty(match[2])) - score += Scorer.objPrio[match[2]]; - else score += Scorer.objPrioDefault; - - results.push([ - docNames[match[0]], - fullname, - "#" + anchor, - descr, - score, - filenames[match[0]], - SearchResultKind.object, - ]); - }; - Object.keys(objects).forEach((prefix) => - objects[prefix].forEach((array) => - objectSearchCallback(prefix, array) - ) - ); - return results; - }, - - /** - * search for full-text terms in the index - */ - performTermsSearch: (searchTerms, excludedTerms) => { - // prepare search - const terms = Search._index.terms; - const titleTerms = Search._index.titleterms; - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const titles = Search._index.titles; - - const scoreMap = new Map(); - const fileMap = new Map(); - - // perform the search on the required terms - searchTerms.forEach((word) => { - const files = []; - const arr = [ - { files: terms[word], score: Scorer.term }, - { files: titleTerms[word], score: Scorer.title }, - ]; - // add support for partial matches - if (word.length > 2) { - const escapedWord = _escapeRegExp(word); - if (!terms.hasOwnProperty(word)) { - Object.keys(terms).forEach((term) => { - if (term.match(escapedWord)) - arr.push({ files: terms[term], score: Scorer.partialTerm }); - }); - } - if (!titleTerms.hasOwnProperty(word)) { - Object.keys(titleTerms).forEach((term) => { - if (term.match(escapedWord)) - arr.push({ files: titleTerms[term], score: Scorer.partialTitle }); - }); - } - } - - // no match but word was a required one - if (arr.every((record) => record.files === undefined)) return; - - // found search word in contents - arr.forEach((record) => { - if (record.files === undefined) return; - - let recordFiles = record.files; - if (recordFiles.length === undefined) recordFiles = [recordFiles]; - files.push(...recordFiles); - - // set score for the word in each file - recordFiles.forEach((file) => { - if (!scoreMap.has(file)) scoreMap.set(file, {}); - scoreMap.get(file)[word] = record.score; - }); - }); - - // create the mapping - files.forEach((file) => { - if (!fileMap.has(file)) fileMap.set(file, [word]); - else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word); - }); - }); - - // now check if the files don't contain excluded terms - const results = []; - for (const [file, wordList] of fileMap) { - // check if all requirements are matched - - // as search terms with length < 3 are discarded - const filteredTermCount = [...searchTerms].filter( - (term) => term.length > 2 - ).length; - if ( - wordList.length !== searchTerms.size && - wordList.length !== filteredTermCount - ) - continue; - - // ensure that none of the excluded terms is in the search result - if ( - [...excludedTerms].some( - (term) => - terms[term] === file || - titleTerms[term] === file || - (terms[term] || []).includes(file) || - (titleTerms[term] || []).includes(file) - ) - ) - break; - - // select one (max) score for the file. - const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); - // add result to the result list - results.push([ - docNames[file], - titles[file], - "", - null, - score, - filenames[file], - SearchResultKind.text, - ]); - } - return results; - }, - - /** - * helper function to return a node containing the - * search summary for a given text. keywords is a list - * of stemmed words. - */ - makeSearchSummary: (htmlText, keywords, anchor) => { - const text = Search.htmlToText(htmlText, anchor); - if (text === "") return null; - - const textLower = text.toLowerCase(); - const actualStartPosition = [...keywords] - .map((k) => textLower.indexOf(k.toLowerCase())) - .filter((i) => i > -1) - .slice(-1)[0]; - const startWithContext = Math.max(actualStartPosition - 120, 0); - - const top = startWithContext === 0 ? "" : "..."; - const tail = startWithContext + 240 < text.length ? "..." : ""; - - let summary = document.createElement("p"); - summary.classList.add("context"); - summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; - - return summary; - }, -}; - -_ready(Search.init); diff --git a/docs/_static/sphinx_highlight.js b/docs/_static/sphinx_highlight.js deleted file mode 100644 index 8a96c69..0000000 --- a/docs/_static/sphinx_highlight.js +++ /dev/null @@ -1,154 +0,0 @@ -/* Highlighting utilities for Sphinx HTML documentation. */ -"use strict"; - -const SPHINX_HIGHLIGHT_ENABLED = true - -/** - * highlight a given string on a node by wrapping it in - * span elements with the given class name. - */ -const _highlight = (node, addItems, text, className) => { - if (node.nodeType === Node.TEXT_NODE) { - const val = node.nodeValue; - const parent = node.parentNode; - const pos = val.toLowerCase().indexOf(text); - if ( - pos >= 0 && - !parent.classList.contains(className) && - !parent.classList.contains("nohighlight") - ) { - let span; - - const closestNode = parent.closest("body, svg, foreignObject"); - const isInSVG = closestNode && closestNode.matches("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.classList.add(className); - } - - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - const rest = document.createTextNode(val.substr(pos + text.length)); - parent.insertBefore( - span, - parent.insertBefore( - rest, - node.nextSibling - ) - ); - node.nodeValue = val.substr(0, pos); - /* There may be more occurrences of search term in this node. So call this - * function recursively on the remaining fragment. - */ - _highlight(rest, addItems, text, className); - - if (isInSVG) { - const rect = document.createElementNS( - "http://www.w3.org/2000/svg", - "rect" - ); - const bbox = parent.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute("class", className); - addItems.push({ parent: parent, target: rect }); - } - } - } else if (node.matches && !node.matches("button, select, textarea")) { - node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); - } -}; -const _highlightText = (thisNode, text, className) => { - let addItems = []; - _highlight(thisNode, addItems, text, className); - addItems.forEach((obj) => - obj.parent.insertAdjacentElement("beforebegin", obj.target) - ); -}; - -/** - * Small JavaScript module for the documentation. - */ -const SphinxHighlight = { - - /** - * highlight the search words provided in localstorage in the text - */ - highlightSearchWords: () => { - if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight - - // get and clear terms from localstorage - const url = new URL(window.location); - const highlight = - localStorage.getItem("sphinx_highlight_terms") - || url.searchParams.get("highlight") - || ""; - localStorage.removeItem("sphinx_highlight_terms") - url.searchParams.delete("highlight"); - window.history.replaceState({}, "", url); - - // get individual terms from highlight string - const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); - if (terms.length === 0) return; // nothing to do - - // There should never be more than one element matching "div.body" - const divBody = document.querySelectorAll("div.body"); - const body = divBody.length ? divBody[0] : document.querySelector("body"); - window.setTimeout(() => { - terms.forEach((term) => _highlightText(body, term, "highlighted")); - }, 10); - - const searchBox = document.getElementById("searchbox"); - if (searchBox === null) return; - searchBox.appendChild( - document - .createRange() - .createContextualFragment( - '" - ) - ); - }, - - /** - * helper function to hide the search marks again - */ - hideSearchWords: () => { - document - .querySelectorAll("#searchbox .highlight-link") - .forEach((el) => el.remove()); - document - .querySelectorAll("span.highlighted") - .forEach((el) => el.classList.remove("highlighted")); - localStorage.removeItem("sphinx_highlight_terms") - }, - - initEscapeListener: () => { - // only install a listener if it is really needed - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; - if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { - SphinxHighlight.hideSearchWords(); - event.preventDefault(); - } - }); - }, -}; - -_ready(() => { - /* Do not call highlightSearchWords() when we are on the search page. - * It will highlight words from the *previous* search query. - */ - if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); - SphinxHighlight.initEscapeListener(); -}); diff --git a/docs/_static/t2g.png b/docs/_static/t2g.png deleted file mode 100644 index 3eb2af6..0000000 Binary files a/docs/_static/t2g.png and /dev/null differ diff --git a/docs/carte_ai.configs.html b/docs/carte_ai.configs.html deleted file mode 100644 index 3eb0391..0000000 --- a/docs/carte_ai.configs.html +++ /dev/null @@ -1,177 +0,0 @@ - - - - - - - - - carte_ai.configs package — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
- -
-
-
-
- -
-

carte_ai.configs package

-
-

Submodules

-
-
-

carte_ai.configs.carte_configs module

-

Specific configurations for the CARTE paper.

-
-
-

carte_ai.configs.directory module

-
-
-

carte_ai.configs.model_parameters module

-

Parameter distributions for hyperparameter optimization

-
-
-class carte_ai.configs.model_parameters.loguniform_int(a, b)
-

Bases: object

-

Integer valued version of the log-uniform distribution

-
-
-rvs(*args, **kwargs)
-

Random variable sample

-
- -
- -
-
-class carte_ai.configs.model_parameters.norm_int(a, b)
-

Bases: object

-

Integer valued version of the normal distribution

-
-
-rvs(*args, **kwargs)
-

Random variable sample

-
- -
- -
-
-

carte_ai.configs.visuailization module

-

Visualization configurations

-
-
-

Module contents

-
-
- - -
-
- -
-
-
-
- - - - \ No newline at end of file diff --git a/docs/carte_ai.data.html b/docs/carte_ai.data.html deleted file mode 100644 index 0bd3919..0000000 --- a/docs/carte_ai.data.html +++ /dev/null @@ -1,319 +0,0 @@ - - - - - - carte_ai.data package — CARTE-AI Documentation - - - - - - -
- - -
- -
-
-
-
-
-

carte_ai.data package

-
-

carte_ai.data.load_data module

- - - -
-
- carte_ai.data.load_data. - spotify() - -
-
-

Load and explore the Spotify dataset, which contains detailed information about over 600,000 Spotify tracks, including audio features, popularity metrics, and genres.

-

This dataset can be used for:

-
    -
  • Building a recommendation system based on user input or preferences.
  • -
  • Classification tasks using audio features and genres.
  • -
  • Any other applications involving music analysis and prediction.
  • -
- -

Variables:

-
    -
  • track_id: Unique identifier for the track.
  • -
  • artists: Names of the artists who performed the track (separated by ";").
  • -
  • album_name: Name of the album.
  • -
  • track_name: Name of the track.
  • -
  • popularity: Popularity score (0–100).
  • -
  • duration_ms: Length of the track in milliseconds.
  • -
  • explicit: Whether the track contains explicit lyrics (true/false).
  • -
  • danceability: Danceability score (0.0–1.0).
  • -
  • energy: Energy score (0.0–1.0).
  • -
  • key: Musical key of the track.
  • -
  • loudness: Loudness in decibels (dB).
  • -
  • mode: Modality of the track (major=1, minor=0).
  • -
  • speechiness: Presence of spoken words (0.0–1.0).
  • -
  • acousticness: Confidence measure for acoustic content (0.0–1.0).
  • -
  • instrumentalness: Likelihood of being instrumental (0.0–1.0).
  • -
  • liveness: Presence of audience (0.0–1.0).
  • -
  • valence: Musical positiveness (0.0–1.0).
  • -
  • tempo: Tempo in beats per minute (BPM).
  • -
  • time_signature: Time signature (3–7).
  • -
  • track_genre: Genre of the track.
  • -
- -

Example Usage:

-
- - - - -
- from carte_ai.data.load_data import * -
-
- num_train = 128 # Example: set the number of training groups/entities -
- random_state = 1 # Set a random seed for reproducibility -
-
- X_train, X_test, y_train, y_test = spotify(num_train, random_state) -
-
- # Print dataset shapes -
- print("Spotify dataset:", X_train.shape, X_test.shape) -
-
-
- -
-
-
- - - -
-
- carte_ai.data.load_data. - wina_pl() - -
-
-

Load and explore the Wina_PL dataset, which contains detailed information about wine prices and attributes in the Polish market.

-

This dataset is ideal for analysis and machine learning tasks related to wine classification, pricing, and preferences.

- -

Variables:

-
    -
  • name: Name of the wine.
  • -
  • country: Country of origin.
  • -
  • region: Region where the wine is produced.
  • -
  • appellation: Controlled origin label.
  • -
  • vineyard: Vineyard producing the wine.
  • -
  • vintage: Year of production.
  • -
  • volume: Bottle volume in milliliters.
  • -
  • ABV: Alcohol by volume (percentage).
  • -
  • serving_temperature: Recommended serving temperature.
  • -
  • wine_type: Type of wine (e.g., red, white).
  • -
  • taste: Wine taste profile (e.g., dry, sweet).
  • -
  • style: Style of the wine (e.g., full-bodied).
  • -
  • vegan: Whether the wine is vegan-friendly.
  • -
  • natural: Indicates if the wine is natural.
  • -
  • grapes: Main grape varieties used.
  • -
- -

Example Usage:

-
- - - - -
- from carte_ai.data.load_data import * -
-
- num_train = 128 # Example: set the number of training groups/entities -
- random_state = 1 # Set a random seed for reproducibility -
-
- X_train, X_test, y_train, y_test = wina_pl(num_train, random_state) -
-
- # Print dataset shapes -
- print("Wina Poland dataset:", X_train.shape, X_test.shape) -
-
-
- - -
- - - - -

For more details, visit the Kaggle dataset page.

-
-
- - - - -
-
- carte_ai.data.load_data. - wine_vivino_price() - -
-
-

Load and explore the Wine Vivino Price dataset, which contains detailed information about wine ratings, prices, and attributes from the Vivino platform.

-

This dataset is ideal for analysis and machine learning tasks related to wine recommendation, pricing, and consumer preferences.

- -

Variables:

-
    -
  • Winery: Name of the winery.
  • -
  • Year: Vintage year of the wine.
  • -
  • Wine ID: Unique identifier for the wine.
  • -
  • Wine: Name of the wine.
  • -
  • Rating: Average rating of the wine.
  • -
  • num_review: Number of reviews for the wine.
  • -
  • price: Price of the wine.
  • -
  • Country: Country where the wine is produced.
  • -
  • Region: Region of the winery.
  • -
- -

Example Usage:

-
- - - - -
- from carte_ai.data.load_data import * -
-
- num_train = 128 # Example: set the number of training groups/entities -
- random_state = 1 # Set a random seed for reproducibility -
-
- X_train, X_test, y_train, y_test = wine_vivino_price(num_train, random_state) -
-
- # Print dataset shapes -
- print("Wine Vivino Price dataset:", X_train.shape, X_test.shape) -
-
-
- - - -

For more details, visit the dataset page.

-
-
- -
-
-
-
-
- -
-
-

© Copyright 2024, Myung Jun Kim, Leo Grinsztajn, Gaël Varoquaux.

-
-
-
-
-
-
- - diff --git a/docs/carte_ai.html b/docs/carte_ai.html deleted file mode 100644 index f337226..0000000 --- a/docs/carte_ai.html +++ /dev/null @@ -1,409 +0,0 @@ - - - - - - - - - carte_ai package — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
- -
-
-
-
- -
-

carte_ai package

-
-

Subpackages

-
- -
-
-
-

Module contents

-
-
- - -
-
- -
-
-
-
- - - - \ No newline at end of file diff --git a/docs/carte_ai.scripts.html b/docs/carte_ai.scripts.html deleted file mode 100644 index 73f8212..0000000 --- a/docs/carte_ai.scripts.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - - carte_ai.scripts package — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
- -
-
-
-
- -
-

carte_ai.scripts package

-
-

Submodules

-
-
-

carte_ai.scripts.compile_results_singletable module

-

Script for compling results

-
-
-

carte_ai.scripts.download_data module

-

Script for downloading required data.

-
-
-carte_ai.scripts.download_data.main(option='carte', include_raw=False, include_ken=False)
-
- -
-
-

carte_ai.scripts.evaluate_singletable module

-

Script for evaluating a model of choice for single tables.

-
-
-carte_ai.scripts.evaluate_singletable.main(data_name, num_train, method, random_state, bagging, device)
-
- -
-
-carte_ai.scripts.evaluate_singletable.run_model(data_name, num_train, method, random_state, bagging, device)
-

Run model for specific experiment setting.

-
- -
-
-

carte_ai.scripts.preprocess_lm module

-

Python script for preparing datasets for evaluation

-
-
-carte_ai.scripts.preprocess_lm.data_preprocess(data_name: str, device: str = 'cuda:0')
-
- -
-
-carte_ai.scripts.preprocess_lm.main(datalist, device: str = 'cuda:0')
-
- -
-
-

carte_ai.scripts.preprocess_raw module

-

Script for preprocessing raw data.

-
-
-carte_ai.scripts.preprocess_raw.main(data_name_list)
-
- -
-
-carte_ai.scripts.preprocess_raw.preprocess_data(data_name)
-

Preprocess the raw data with the given name of the dataset.

-
- -
-
-

Module contents

-
-
- - -
-
- -
-
-
-
- - - - \ No newline at end of file diff --git a/docs/carte_ai.src.html b/docs/carte_ai.src.html deleted file mode 100644 index 14691d0..0000000 --- a/docs/carte_ai.src.html +++ /dev/null @@ -1,2348 +0,0 @@ - - - - - - - - - carte_ai.src package — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - -
- - -
- -
-
-
- -
-
-
-
- -
-

carte_ai.src package

-
-

Submodules

-
- -
-
-

carte_ai.src.carte_table_to_graph module

-
-
-class carte_ai.src.carte_table_to_graph.Table2GraphTransformer(*, include_edge_attr: bool = True, lm_model: str = 'fasttext', n_components: int = 300, n_jobs: int = 1, fasttext_model_path: str | None = None)
-

Bases: TransformerMixin, BaseEstimator

-

Transformer from tables to a list of graphs.

-
-

Parameters

-
-
include_edge_attrbool, optional

Whether to include edge attributes, by default True.

-
-
lm_modelstr, optional

Language model to use, by default “fasttext”.

-
-
n_componentsint, optional

Number of components for the encoder, by default 300.

-
-
n_jobsint, optional

Number of jobs for parallel processing, by default 1.

-
-
fasttext_model_pathstr, optional

Path to the FastText model file, required if lm_model is ‘fasttext’.

-
-
-
-
-fit(X, y=None)
-

Fit function used for the Table2GraphTransformer.

-
-

Parameters

-
-
Xpandas.DataFrame

Input data to fit.

-
-
yarray-like, optional

Target values, by default None.

-
-
-
-
-

Returns

-
-
selfTable2GraphTransformer

Fitted transformer.

-

Example Usage:

-
- - - - -
- import fasttext -
- from huggingface_hub import hf_hub_download -
-
- # Download the FastText model from HuggingFace Hub -
- model_path = hf_hub_download("hi-paris/fastText", "cc.en.300.bin") -
-
- # Initialize the Table2GraphTransformer -
- preprocessor = Table2GraphTransformer(fasttext_model_path=model_path) -
-
- # View the transformer details -
- help(Table2GraphTransformer) -
-
- # Fit and transform the training data -
- X_train = preprocessor.fit_transform(X_train, y=y_train) -
-
- # Transform the test data -
- X_test = preprocessor.transform(X_test) -
-
-
- - - -
-
-
-
- -
-
-

carte_ai.src.carte_estimator module

-

CARTE estimators for regression and classification.

-
-
-class carte_ai.src.carte_estimator.BaseCARTEEstimator(*, num_layers, load_pretrain, freeze_pretrain, learning_rate, batch_size, max_epoch, dropout, val_size, cross_validate, early_stopping_patience, num_model, random_state, n_jobs, device, disable_pbar, pretrained_model_path='/home/infres/gbrison/fcclip_v2/miniconda3/envs/carte/lib/python3.10/site-packages/carte_ai/data/etc/kg_pretrained.pt')
-

Bases: BaseEstimator

-

Base class for CARTE Estimator.

-
-
-fit(X, y)
-

Fit the CARTE model.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
yarray-like of shape (n_samples,)

Target values.

-
-
-
-
-

Returns

-
-
selfobject

Fitted estimator.

-
-
-
-
- -

Example Usage:

-
- - - - -
- # Define some parameters -
- fixed_params = dict() -
- fixed_params["num_model"] = 10 # 10 models for the bagging strategy -
- fixed_params["disable_pbar"] = False # True if you want cleanness -
- fixed_params["random_state"] = 0 -
- fixed_params["device"] = "cpu" -
- fixed_params["n_jobs"] = 10 -
- fixed_params["pretrained_model_path"] = config_directory["pretrained_model"] -
-
- # Define the estimator and run fit/predict -
- estimator = CARTERegressor(**fixed_params) # CARTERegressor for Regression -
- estimator.fit(X=X_train, y=y_train) -
- y_pred = estimator.predict(X_test) -
-
- # Obtain the r2 score on predictions -
- score = r2_score(y_test, y_pred) -
- print("\nThe R2 score for CARTE:", "{:.4f}".format(score)) -
-
-
- - - - -
- -
-
-class carte_ai.src.carte_estimator.BaseCARTEMultitableEstimator(*, source_data, num_layers, load_pretrain, freeze_pretrain, learning_rate, batch_size, max_epoch, dropout, val_size, target_fraction, early_stopping_patience, num_model, random_state, n_jobs, device, disable_pbar, pretrained_model_path)
-

Bases: BaseCARTEEstimator

-

Base class for CARTE Multitable Estimator.

-
-
-fit(X, y)
-

Fit the CARTE Multitable model.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples of the target data.

-
-
yarray-like of shape (n_samples,)

Target values.

-
-
-
-
-

Returns

-
-
selfobject

Fitted estimator.

-
-
-
-
- -
- -
-
-class carte_ai.src.carte_estimator.CARTEClassifier(*, loss: str = 'binary_crossentropy', scoring: str = 'auroc', num_layers: int = 1, load_pretrain: bool = True, freeze_pretrain: bool = True, learning_rate: float = 0.001, batch_size: int = 16, max_epoch: int = 500, dropout: float = 0, val_size: float = 0.2, cross_validate: bool = False, early_stopping_patience: None | int = 40, num_model: int = 1, random_state: int = 0, n_jobs: int = 1, device: str = 'cpu', disable_pbar: bool = True, pretrained_model_path='/home/infres/gbrison/fcclip_v2/miniconda3/envs/carte/lib/python3.10/site-packages/carte_ai/data/etc/kg_pretrained.pt')
-

Bases: ClassifierMixin, BaseCARTEEstimator

-

CARTE Classifier for Classification tasks.

-

This estimator is GNN-based model compatible with the CARTE pretrained model.

-
-

Parameters

-
-
loss{‘binary_crossentropy’, ‘categorical_crossentropy’}, default=’binary_crossentropy’

The loss function used for backpropagation.

-
-
scoring{‘auroc’, ‘auprc’, ‘binary_entropy’}, default=’auroc’

The scoring function used for validation.

-
-
num_layersint, default=1

The number of layers for the NN model

-
-
load_pretrainbool, default=True

Indicates whether to load pretrained weights or not

-
-
freeze_pretrainbool, default=True

Indicates whether to freeze the pretrained weights in the training or not

-
-
learning_ratefloat, default=1e-3

The learning rate of the model. The model uses AdamW as the optimizer

-
-
batch_sizeint, default=16

The batch size used for training

-
-
max_epochint or None, default=500

The maximum number of epoch for training

-
-
dropoutfloat, default=0

The dropout rate for training

-
-
val_sizefloat, default=0.1

The size of the validation set used for early stopping

-
-
cross_validatebool, default=False

Indicates whether to use cross-validation strategy for train/validation split

-
-
early_stopping_patienceint or None, default=40

The early stopping patience when early stopping is used. -If set to None, no early stopping is employed

-
-
num_modelint, default=1

The total number of models used for Bagging strategy

-
-
random_stateint or None, default=0

Pseudo-random number generator to control the train/validation data split -if early stoppingis enabled, the weight initialization, and the dropout. -Pass an int for reproducible output across multiple function calls.

-
-
n_jobsint, default=1

Number of jobs to run in parallel. Training the estimator the score are parallelized -over the number of models.

-
-
device{“cpu”, “gpu”}, default=”cpu”,

The device used for the estimator.

-
-
disable_pbarbool, default=True

Indicates whether to show progress bars for the training process.

-
-
-
-
-decision_function(X)
-

Compute the decision function of X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-

decision : ndarray, shape (n_samples,)

-
-
- -
-
-predict(X)
-

Predict classes for X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
yndarray, shape (n_samples,)

The predicted classes.

-
-
-
-
- -
-
-predict_proba(X)
-

Predict class probabilities for X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
pndarray, shape (n_samples,) for binary classification or (n_samples, n_classes)

The class probabilities of the input samples.

-
-
-
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CARTEClassifier
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
-
- -
-
-class carte_ai.src.carte_estimator.CARTEMultitableClassifer(*, loss: str = 'binary_crossentropy', scoring: str = 'auroc', source_data: dict = {}, num_layers: int = 1, load_pretrain: bool = True, freeze_pretrain: bool = True, learning_rate: float = 0.001, batch_size: int = 16, max_epoch: int = 500, dropout: float = 0, val_size: float = 0.2, target_fraction: float = 0.125, early_stopping_patience: None | int = 40, num_model: int = 1, random_state: int = 0, n_jobs: int = 1, device: str = 'cpu', disable_pbar: bool = True, pretrained_model_path='/home/infres/gbrison/fcclip_v2/miniconda3/envs/carte/lib/python3.10/site-packages/carte_ai/data/etc/kg_pretrained.pt')
-

Bases: ClassifierMixin, BaseCARTEMultitableEstimator

-

CARTE Multitable Classifier for Classification tasks.

-

This estimator is GNN-based model compatible with the CARTE pretrained model.

-
-

Parameters

-
-
loss{‘binary_crossentropy’, ‘categorical_crossentropy’}, default=’binary_crossentropy’

The loss function used for backpropagation.

-
-
scoring{‘auroc’, ‘auprc’, ‘binary_entropy’}, default=’auroc’

The scoring function used for validation.

-
-
source_datedict, default={}

The source data used in multitable estimator.

-
-
num_layersint, default=1

The number of layers for the NN model

-
-
load_pretrainbool, default=True

Indicates whether to load pretrained weights or not

-
-
freeze_pretrainbool, default=True

Indicates whether to freeze the pretrained weights in the training or not

-
-
learning_ratefloat, default=1e-3

The learning rate of the model. The model uses AdamW as the optimizer

-
-
batch_sizeint, default=16

The batch size used for training

-
-
max_epochint or None, default=500

The maximum number of epoch for training

-
-
dropoutfloat, default=0

The dropout rate for training

-
-
val_sizefloat, default=0.1

The size of the validation set used for early stopping

-
-
target_fractionfloat, default=0.125

The fraction of target data inside of a batch when training

-
-
early_stopping_patienceint or None, default=40

The early stopping patience when early stopping is used. -If set to None, no early stopping is employed

-
-
num_modelint, default=1

The total number of models used for Bagging strategy

-
-
random_stateint or None, default=0

Pseudo-random number generator to control the train/validation data split -if early stoppingis enabled, the weight initialization, and the dropout. -Pass an int for reproducible output across multiple function calls.

-
-
n_jobsint, default=1

Number of jobs to run in parallel. Training the estimator the score are parallelized -over the number of models.

-
-
device{“cpu”, “gpu”}, default=”cpu”,

The device used for the estimator.

-
-
disable_pbarbool, default=True

Indicates whether to show progress bars for the training process.

-
-
-
-
-decision_function(X)
-

Compute the decision function of X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-

decision : ndarray, shape (n_samples,)

-
-
- -
-
-predict(X)
-

Predict classes for X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
yndarray, shape (n_samples,)

The predicted classes.

-
-
-
-
- -
-
-predict_proba(X)
-

Predict class probabilities for X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
pndarray, shape (n_samples,) for binary classification or (n_samples, n_classes)

The class probabilities of the input samples.

-
-
-
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CARTEMultitableClassifer
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
-
- -
-
-class carte_ai.src.carte_estimator.CARTEMultitableRegressor(*, loss: str = 'squared_error', scoring: str = 'r2_score', source_data: dict = {}, num_layers: int = 1, load_pretrain: bool = True, freeze_pretrain: bool = True, learning_rate: float = 0.001, batch_size: int = 16, max_epoch: int = 500, dropout: float = 0, val_size: float = 0.2, target_fraction: float = 0.125, early_stopping_patience: None | int = 40, num_model: int = 1, random_state: int = 0, n_jobs: int = 1, device: str = 'cpu', disable_pbar: bool = True, pretrained_model_path='/home/infres/gbrison/fcclip_v2/miniconda3/envs/carte/lib/python3.10/site-packages/carte_ai/data/etc/kg_pretrained.pt')
-

Bases: RegressorMixin, BaseCARTEMultitableEstimator

-

CARTE Multitable Regressor for Regression tasks.

-

This estimator is GNN-based model compatible with the CARTE pretrained model.

-
-

Parameters

-
-
loss{‘squared_error’, ‘absolute_error’}, default=’squared_error’

The loss function used for backpropagation.

-
-
scoring{‘r2_score’, ‘squared_error’}, default=’r2_score’

The scoring function used for validation.

-
-
source_datedict, default={}

The source data used in multitable estimator.

-
-
num_layersint, default=1

The number of layers for the NN model

-
-
load_pretrainbool, default=True

Indicates whether to load pretrained weights or not

-
-
freeze_pretrainbool, default=True

Indicates whether to freeze the pretrained weights in the training or not

-
-
learning_ratefloat, default=1e-3

The learning rate of the model. The model uses AdamW as the optimizer

-
-
batch_sizeint, default=16

The batch size used for training

-
-
max_epochint or None, default=500

The maximum number of epoch for training

-
-
dropoutfloat, default=0

The dropout rate for training

-
-
val_sizefloat, default=0.1

The size of the validation set used for early stopping

-
-
target_fractionfloat, default=0.125

The fraction of target data inside of a batch when training

-
-
early_stopping_patienceint or None, default=40

The early stopping patience when early stopping is used. -If set to None, no early stopping is employed

-
-
num_modelint, default=1

The total number of models used for Bagging strategy

-
-
random_stateint or None, default=0

Pseudo-random number generator to control the train/validation data split -if early stoppingis enabled, the weight initialization, and the dropout. -Pass an int for reproducible output across multiple function calls.

-
-
n_jobsint, default=1

Number of jobs to run in parallel. Training the estimator the score are parallelized -over the number of models.

-
-
device{“cpu”, “gpu”}, default=”cpu”,

The device used for the estimator.

-
-
disable_pbarbool, default=True

Indicates whether to show progress bars for the training process.

-
-
-
-
-predict(X)
-

Predict values for X.

-

Returns the weighted average of the singletable model and all pairwise model with 1-source.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
yndarray, shape (n_samples,)

The predicted values.

-
-
-
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CARTEMultitableRegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
-
- -
-
-class carte_ai.src.carte_estimator.CARTERegressor(*, loss: str = 'squared_error', scoring: str = 'r2_score', num_layers: int = 1, load_pretrain: bool = True, freeze_pretrain: bool = True, learning_rate: float = 0.001, batch_size: int = 16, max_epoch: int = 500, dropout: float = 0, val_size: float = 0.2, cross_validate: bool = False, early_stopping_patience: None | int = 40, num_model: int = 1, random_state: int = 0, n_jobs: int = 1, device: str = 'cpu', disable_pbar: bool = True, pretrained_model_path='/home/infres/gbrison/fcclip_v2/miniconda3/envs/carte/lib/python3.10/site-packages/carte_ai/data/etc/kg_pretrained.pt')
-

Bases: RegressorMixin, BaseCARTEEstimator

-

CARTE Regressor for Regression tasks.

-

This estimator is GNN-based model compatible with the CARTE pretrained model.

-
-

Parameters

-
-
loss{‘squared_error’, ‘absolute_error’}, default=’squared_error’

The loss function used for backpropagation.

-
-
scoring{‘r2_score’, ‘squared_error’}, default=’r2_score’

The scoring function used for validation.

-
-
num_layersint, default=1

The number of layers for the NN model

-
-
load_pretrainbool, default=True

Indicates whether to load pretrained weights or not

-
-
freeze_pretrainbool, default=True

Indicates whether to freeze the pretrained weights in the training or not

-
-
learning_ratefloat, default=1e-3

The learning rate of the model. The model uses AdamW as the optimizer

-
-
batch_sizeint, default=16

The batch size used for training

-
-
max_epochint or None, default=500

The maximum number of epoch for training

-
-
dropoutfloat, default=0

The dropout rate for training

-
-
val_sizefloat, default=0.1

The size of the validation set used for early stopping

-
-
cross_validatebool, default=False

Indicates whether to use cross-validation strategy for train/validation split

-
-
early_stopping_patienceint or None, default=40

The early stopping patience when early stopping is used. -If set to None, no early stopping is employed

-
-
num_modelint, default=1

The total number of models used for Bagging strategy

-
-
random_stateint or None, default=0

Pseudo-random number generator to control the train/validation data split -if early stoppingis enabled, the weight initialization, and the dropout. -Pass an int for reproducible output across multiple function calls.

-
-
n_jobsint, default=1

Number of jobs to run in parallel. Training the estimator the score are parallelized -over the number of models.

-
-
device{“cpu”, “gpu”}, default=”cpu”,

The device used for the estimator.

-
-
disable_pbarbool, default=True

Indicates whether to show progress bars for the training process.

-
-
-
-
-predict(X)
-

Predict values for X. Returns the average of predicted values over all the models.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
yndarray, shape (n_samples,)

The predicted values.

-
-
-
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CARTERegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
-
- -
-
-class carte_ai.src.carte_estimator.CARTE_AblationClassifier(*, ablation_method: str = 'exclude-edge', loss: str = 'binary_crossentropy', scoring: str = 'auroc', num_layers: int = 1, load_pretrain: bool = False, freeze_pretrain: bool = False, learning_rate: float = 0.001, batch_size: int = 16, max_epoch: int = 500, dropout: float = 0, val_size: float = 0.2, cross_validate: bool = False, early_stopping_patience: None | int = 40, num_model: int = 1, random_state: int = 0, n_jobs: int = 1, device: str = 'cpu', disable_pbar: bool = True, pretrained_model_path='/home/infres/gbrison/fcclip_v2/miniconda3/envs/carte/lib/python3.10/site-packages/carte_ai/data/etc/kg_pretrained.pt')
-

Bases: CARTEClassifier

-

CARTE Ablation Classifier for Classification tasks.

-

This estimator is GNN-based model compatible with the CARTE pretrained model. -Note that this is an implementation for the ablation study of CARTE

-
-

Parameters

-
-
ablation_method{‘exclude-edge’, ‘exclude-attention’, ‘exclude-attention-edge’}, default=’exclude-edge’

The ablation method for CARTE Estimators.

-
-
loss{‘binary_crossentropy’, ‘categorical_crossentropy’}, default=’binary_crossentropy’

The loss function used for backpropagation.

-
-
scoring{‘auroc’, ‘auprc’, ‘binary_entropy’}, default=’auroc’

The scoring function used for validation.

-
-
num_layersint, default=1

The number of layers for the NN model

-
-
load_pretrainbool, default=True

Indicates whether to load pretrained weights or not

-
-
freeze_pretrainbool, default=True

Indicates whether to freeze the pretrained weights in the training or not

-
-
learning_ratefloat, default=1e-3

The learning rate of the model. The model uses AdamW as the optimizer

-
-
batch_sizeint, default=16

The batch size used for training

-
-
max_epochint or None, default=500

The maximum number of epoch for training

-
-
dropoutfloat, default=0

The dropout rate for training

-
-
val_sizefloat, default=0.1

The size of the validation set used for early stopping

-
-
cross_validatebool, default=False

Indicates whether to use cross-validation strategy for train/validation split

-
-
early_stopping_patienceint or None, default=40

The early stopping patience when early stopping is used. -If set to None, no early stopping is employed

-
-
num_modelint, default=1

The total number of models used for Bagging strategy

-
-
random_stateint or None, default=0

Pseudo-random number generator to control the train/validation data split -if early stoppingis enabled, the weight initialization, and the dropout. -Pass an int for reproducible output across multiple function calls.

-
-
n_jobsint, default=1

Number of jobs to run in parallel. Training the estimator the score are parallelized -over the number of models.

-
-
device{“cpu”, “gpu”}, default=”cpu”,

The device used for the estimator.

-
-
disable_pbarbool, default=True

Indicates whether to show progress bars for the training process.

-
-
-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CARTE_AblationClassifier
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
-
- -
-
-class carte_ai.src.carte_estimator.CARTE_AblationRegressor(*, ablation_method: str = 'exclude-edge', loss: str = 'squared_error', scoring: str = 'r2_score', num_layers: int = 1, load_pretrain: bool = True, freeze_pretrain: bool = True, learning_rate: float = 0.001, batch_size: int = 16, max_epoch: int = 500, dropout: float = 0, val_size: float = 0.2, cross_validate: bool = False, early_stopping_patience: None | int = 40, num_model: int = 1, random_state: int = 0, n_jobs: int = 1, device: str = 'cpu', disable_pbar: bool = True, pretrained_model_path='/home/infres/gbrison/fcclip_v2/miniconda3/envs/carte/lib/python3.10/site-packages/carte_ai/data/etc/kg_pretrained.pt')
-

Bases: CARTERegressor

-

CARTE Ablation Regressor for Regression tasks.

-

This estimator is GNN-based model compatible with the CARTE pretrained model. -Note that this is an implementation for the ablation study of CARTE

-
-

Parameters

-
-
ablation_method{‘exclude-edge’, ‘exclude-attention’, ‘exclude-attention-edge’}, default=’exclude-edge’

The ablation method for CARTE Estimators.

-
-
loss{‘squared_error’, ‘absolute_error’}, default=’squared_error’

The loss function used for backpropagation.

-
-
scoring{‘r2_score’, ‘squared_error’}, default=’r2_score’

The scoring function used for validation.

-
-
num_layersint, default=1

The number of layers for the NN model

-
-
load_pretrainbool, default=True

Indicates whether to load pretrained weights or not

-
-
freeze_pretrainbool, default=True

Indicates whether to freeze the pretrained weights in the training or not

-
-
learning_ratefloat, default=1e-3

The learning rate of the model. The model uses AdamW as the optimizer

-
-
batch_sizeint, default=16

The batch size used for training

-
-
max_epochint or None, default=500

The maximum number of epoch for training

-
-
dropoutfloat, default=0

The dropout rate for training

-
-
val_sizefloat, default=0.1

The size of the validation set used for early stopping

-
-
cross_validatebool, default=False

Indicates whether to use cross-validation strategy for train/validation split

-
-
early_stopping_patienceint or None, default=40

The early stopping patience when early stopping is used. -If set to None, no early stopping is employed

-
-
num_modelint, default=1

The total number of models used for Bagging strategy

-
-
random_stateint or None, default=0

Pseudo-random number generator to control the train/validation data split -if early stoppingis enabled, the weight initialization, and the dropout. -Pass an int for reproducible output across multiple function calls.

-
-
n_jobsint, default=1

Number of jobs to run in parallel. Training the estimator the score are parallelized -over the number of models.

-
-
device{“cpu”, “gpu”}, default=”cpu”,

The device used for the estimator.

-
-
disable_pbarbool, default=True

Indicates whether to show progress bars for the training process.

-
-
-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CARTE_AblationRegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
-
- -
-
-class carte_ai.src.carte_estimator.IdxIterator(n_batch: int, domain_indicator: Tensor, target_fraction: float)
-

Bases: object

-

Class for iterating indices to set up the batch for CARTE Multitables

-
-
-sample()
-
- -
-
-set_num_samples()
-
- - -
-

carte_ai.src.baseline_multitable module

-

Baselines for multitable problem.

-
-
-class carte_ai.src.baseline_multitable.CatBoostMultitableClassifier(*, source_data: dict = {}, max_depth: int = 6, learning_rate: float = 0.03, bagging_temperature: float = 1, l2_leaf_reg: float = 3.0, one_hot_max_size: int = 2, iterations: int = 1000, thread_count: int = 1, source_fraction: float = 0.5, num_model: int = 1, val_size: float = 0.1, random_state: int = 0, n_jobs: int = 1)
-

Bases: GradientBoostingClassifierBase

-

Base class for CatBoost Multitable Classifier.

-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CatBoostMultitableClassifier
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.CatBoostMultitableRegressor(*, source_data: dict = {}, max_depth: int = 6, learning_rate: float = 0.03, bagging_temperature: float = 1, l2_leaf_reg: float = 3.0, one_hot_max_size: int = 2, iterations: int = 1000, thread_count: int = 1, source_fraction: float = 0.5, num_model: int = 1, val_size: float = 0.1, random_state: int = 0, n_jobs: int = 1)
-

Bases: GradientBoostingRegressorBase

-

Base class for CatBoost Multitable Regressor.

-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CatBoostMultitableRegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.GradientBoostingClassifierBase(*, source_data, source_fraction, num_model, val_size, random_state, n_jobs)
-

Bases: ClassifierMixin, GradientBoostingMultitableBase

-

Base class for Gradient Boosting Multitable Classifier.

-
-
-decision_function(X)
-

Compute the decision function of X.

-
- -
-
-predict(X)
-

Predict classes for X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
yndarray, shape (n_samples,)

The predicted classes.

-
-
-
-
- -
-
-predict_proba(X)
-

Predict class probabilities for X.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
pndarray, shape (n_samples,) for binary classification or (n_samples, n_classes)

The class probabilities of the input samples.

-
-
-
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') GradientBoostingClassifierBase
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.GradientBoostingMultitableBase(*, source_data, source_fraction, num_model, val_size, random_state, n_jobs)
-

Bases: BaseEstimator

-

Base class for Gradient Boosting Multitable Estimator.

-
-
-fit(X, y)
-

Fit the model.

-
-

Parameters

-
-
XPandas dataframe of the target dataset (n_samples)

The input samples.

-
-
yarray-like of shape (n_samples,)

Target values.

-
-
-
-
-

Returns

-
-
selfobject

Fitted estimator.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.GradientBoostingRegressorBase(*, source_data, source_fraction, num_model, val_size, random_state, n_jobs)
-

Bases: RegressorMixin, GradientBoostingMultitableBase

-

Base class for Gradient Boosting Multitable Regressor.

-
-
-predict(X)
-

Predict values for X. Returns the average of predicted values over all the models.

-
-

Parameters

-
-
Xlist of graph objects with size (n_samples)

The input samples.

-
-
-
-
-

Returns

-
-
yndarray, shape (n_samples,)

The predicted values.

-
-
-
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') GradientBoostingRegressorBase
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.HistGBMultitableClassifier(*, source_data: dict = {}, learning_rate: float = 0.1, max_depth: None | int = None, max_leaf_nodes: int = 31, min_samples_leaf: int = 20, l2_regularization: float = 0, source_fraction: float = 0.5, num_model: int = 1, val_size: float = 0.1, random_state: int = 0, n_jobs: int = 1)
-

Bases: GradientBoostingClassifierBase

-

Base class for Historgram Gradient Boosting Multitable Classifier.

-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') HistGBMultitableClassifier
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.HistGBMultitableRegressor(*, source_data: dict = {}, learning_rate: float = 0.1, max_depth: None | int = None, max_leaf_nodes: int = 31, min_samples_leaf: int = 20, l2_regularization: float = 0, source_fraction: float = 0.5, num_model: int = 1, val_size: float = 0.1, random_state: int = 0, n_jobs: int = 1)
-

Bases: GradientBoostingRegressorBase

-

Base class for Historgram Gradient Boosting Multitable Regressor.

-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') HistGBMultitableRegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.XGBoostMultitableClassifier(*, source_data: dict = {}, n_estimators: int = 100, max_depth: int = 6, min_child_weight: float = 1, subsample: float = 1, learning_rate: float = 0.3, colsample_bylevel: float = 1, colsample_bytree: float = 1, reg_gamma: float = 0, reg_lambda: float = 1, reg_alpha: float = 0, source_fraction: float = 0.5, num_model: int = 1, val_size: float = 0.1, random_state: int = 0, n_jobs: int = 1)
-

Bases: GradientBoostingClassifierBase

-

Base class for XGBoost Multitable Classifier.

-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') XGBoostMultitableClassifier
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_multitable.XGBoostMultitableRegressor(*, source_data: dict = {}, n_estimators: int = 100, max_depth: int = 6, min_child_weight: float = 1, subsample: float = 1, learning_rate: float = 0.3, colsample_bylevel: float = 1, colsample_bytree: float = 1, reg_gamma: float = 0, reg_lambda: float = 1, reg_alpha: float = 0, source_fraction: float = 0.5, num_model: int = 1, val_size: float = 0.1, random_state: int = 0, n_jobs: int = 1)
-

Bases: GradientBoostingRegressorBase

-

Base class for XGBoost Multitable Regressor.

-
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') XGBoostMultitableRegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-

carte_ai.src.baseline_singletable_nn module

-

Neural network baseline for comparison.

-
-
-class carte_ai.src.baseline_singletable_nn.BaseMLPEstimator(*, hidden_dim: int = 256, num_layers: int = 2, dropout_prob: float = 0.2, learning_rate: float = 0.001, weight_decay: float = 0.01, batch_size: int = 128, val_size: float = 0.1, num_model: int = 1, max_epoch: int = 200, early_stopping_patience: None | int = 10, n_jobs: int = 1, device: str = 'cpu', random_state: int = 0, disable_pbar: bool = True)
-

Bases: MLPBase

-

Base class for MLP Estimator.

-
- -
-
-class carte_ai.src.baseline_singletable_nn.BaseRESNETEstimator(*, normalization: str | None = 'layernorm', num_layers: int = 4, hidden_dim: int = 256, hidden_factor: int = 2, hidden_dropout_prob: float = 0.2, residual_dropout_prob: float = 0.2, learning_rate: float = 0.001, weight_decay: float = 0.01, batch_size: int = 128, val_size: float = 0.1, num_model: int = 1, max_epoch: int = 200, early_stopping_patience: None | int = 10, n_jobs: int = 1, device: str = 'cpu', random_state: int = 0, disable_pbar: bool = True)
-

Bases: MLPBase

-

Base class for RESNET Estimator.

-
- -
-
-class carte_ai.src.baseline_singletable_nn.MLPBase(*, hidden_dim, learning_rate, weight_decay, batch_size, val_size, num_model, max_epoch, early_stopping_patience, n_jobs, device, random_state, disable_pbar)
-

Bases: BaseEstimator

-

Base class for MLP.

-
-
-fit(X, y)
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.MLPClassifier(*, loss: str = 'binary_crossentropy', hidden_dim: int = 256, num_layers: int = 2, dropout_prob: float = 0.2, learning_rate: float = 0.001, weight_decay: float = 0.01, batch_size: int = 128, val_size: float = 0.1, num_model: int = 1, max_epoch: int = 200, early_stopping_patience: None | int = 10, n_jobs: int = 1, device: str = 'cpu', random_state: int = 0, disable_pbar: bool = True)
-

Bases: ClassifierMixin, BaseMLPEstimator

-
-
-decision_function(X)
-
- -
-
-predict(X)
-
- -
-
-predict_proba(X)
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') MLPClassifier
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.MLPRegressor(*, loss: str = 'squared_error', hidden_dim: int = 256, num_layers: int = 2, dropout_prob: float = 0.2, learning_rate: float = 0.001, weight_decay: float = 0.01, batch_size: int = 128, val_size: float = 0.1, num_model: int = 1, max_epoch: int = 200, early_stopping_patience: None | int = 10, n_jobs: int = 1, device: str = 'cpu', random_state: int = 0, disable_pbar: bool = True)
-

Bases: RegressorMixin, BaseMLPEstimator

-
-
-predict(X)
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') MLPRegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.MLP_Model(input_dim: int, hidden_dim: int, output_dim: int, dropout_prob: float, num_layers: int)
-

Bases: Module

-
-
-forward(X)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.RESNETClassifier(*, loss: str = 'binary_crossentropy', normalization: str | None = 'layernorm', num_layers: int = 4, hidden_dim: int = 256, hidden_factor: int = 2, hidden_dropout_prob: float = 0.2, residual_dropout_prob: float = 0.2, learning_rate: float = 0.001, weight_decay: float = 0.01, batch_size: int = 128, val_size: float = 0.1, num_model: int = 1, max_epoch: int = 200, early_stopping_patience: None | int = 10, n_jobs: int = 1, device: str = 'cpu', random_state: int = 0, disable_pbar: bool = True)
-

Bases: ClassifierMixin, BaseRESNETEstimator

-
-
-decision_function(X)
-
- -
-
-predict(X)
-
- -
-
-predict_proba(X)
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') RESNETClassifier
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.RESNETRegressor(*, loss: str = 'squared_error', normalization: str | None = 'layernorm', num_layers: int = 4, hidden_dim: int = 256, hidden_factor: int = 2, hidden_dropout_prob: float = 0.2, residual_dropout_prob: float = 0.2, learning_rate: float = 0.001, weight_decay: float = 0.01, batch_size: int = 128, val_size: float = 0.1, num_model: int = 1, max_epoch: int = 200, early_stopping_patience: None | int = 10, n_jobs: int = 1, device: str = 'cpu', random_state: int = 0, disable_pbar: bool = True)
-

Bases: RegressorMixin, BaseRESNETEstimator

-
-
-predict(X)
-
- -
-
-set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') RESNETRegressor
-

Request metadata passed to the score method.

-

Note that this method is only relevant if -enable_metadata_routing=True (see sklearn.set_config()). -Please see User Guide on how the routing -mechanism works.

-

The options for each parameter are:

-
    -
  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • -
  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • -
  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • -
  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

  • -
-

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the -existing request. This allows you to change the request for some -parameters and not others.

-
-

Added in version 1.3.

-
-
-

Note

-

This method is only relevant if this estimator is used as a -sub-estimator of a meta-estimator, e.g. used inside a -Pipeline. Otherwise it has no effect.

-
-
-

Parameters

-
-
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

-
-
-
-
-

Returns

-
-
selfobject

The updated object.

-
-
-
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.RESNET_Model(input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, **block_args)
-

Bases: Module

-
-
-forward(X)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.Residual_Block(input_dim: int, output_dim: int, hidden_factor: int, normalization: str | None = 'layernorm', hidden_dropout_prob: float = 0.2, residual_dropout_prob: float = 0.2)
-

Bases: Module

-
-
-forward(x: Tensor)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
-
-reset_parameters() None
-
- -
- -
-
-class carte_ai.src.baseline_singletable_nn.TabularDataset(X, y)
-

Bases: Dataset

-
- - -
- -
-
-

carte_ai.src.carte_gridsearch module

-

Custom grid search used for CARTE-GNN model

-
-
-carte_ai.src.carte_gridsearch.carte_gridsearch(estimator, X_train: list, y_train: array, param_distributions: dict, refit: bool = True, n_jobs: int = 1)
-

CARTE grid search.

-

This function runs grid search for CARTE GNN models.

-
-

Parameters

-
-
estimatorCARTE estimator

The CARTE estimator used for grid search

-
-
X_trainlist

The list of graph objects for the train data transformed using Table2GraphTransformer

-
-
y_trainnumpy array of shape (n_samples,)

The target variable of the train data.

-
-
param_distributions: dict

The dictionary of parameter grids to search for the optimial parameter.

-
-
refit: bool, default=True

Indicates whether to return a refitted estimator with the best parameter.

-
-
n_jobs: int, default=1

Number of jobs to run in parallel. Training the estimator in the grid search is parallelized -over the parameter grid.

-
-
-
-
-

Returns

-
-
ResultPandas DataFrame

The result of each parameter grid.

-
-
best_paramsdict

The dictionary of best parameters obtained through grid search.

-
-
best_estimatorCARTEGNN estimator

The CARTE estimator trained using the best_params if refit is set to True.

-
-
-
-
- -
-
-

carte_ai.src.carte_model module

-
-
-class carte_ai.src.carte_model.CARTE_Attention(input_dim: int, output_dim: int, num_heads: int = 1, concat: bool = True, read_out: bool = False)
-

Bases: Module

-
-
-forward(x: Tensor, edge_index: Tensor, edge_attr: Tensor, return_attention: bool = False)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
-
-reset_parameters()
-
- -
- -
-
-class carte_ai.src.carte_model.CARTE_Base(input_dim_x: int, input_dim_e: int, hidden_dim: int, num_layers: int, **block_args)
-

Bases: Module

-
-
-forward(x, edge_index, edge_attr, return_attention=False)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- -
-
-class carte_ai.src.carte_model.CARTE_Block(input_dim: int, ff_dim: int, num_heads: int = 1, concat: bool = True, dropout: float = 0.1, read_out: bool = False)
-

Bases: Module

-
-
-forward(x: Tensor, edge_index: Tensor, edge_attr: Tensor)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- -
-
-class carte_ai.src.carte_model.CARTE_Contrast
-

Bases: Module

-
-
-forward(x: Tensor)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- -
-
-class carte_ai.src.carte_model.CARTE_NN_Model(input_dim_x: int, input_dim_e: int, hidden_dim: int, output_dim: int, num_layers: int, **block_args)
-

Bases: Module

-
-
-forward(input)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- -
-
-class carte_ai.src.carte_model.CARTE_NN_Model_Ablation(ablation_method: str, input_dim_x: int, input_dim_e: int, hidden_dim: int, output_dim: int, num_layers: int, **block_args)
-

Bases: Module

-
-
-forward(input)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- -
-
-class carte_ai.src.carte_model.CARTE_Pretrain(input_dim_x: int, input_dim_e: int, hidden_dim: int, num_layers: int, **block_args)
-

Bases: Module

-
-
-forward(input)
-

Define the computation performed at every call.

-

Should be overridden by all subclasses.

-
-

Note

-

Although the recipe for forward pass needs to be defined within -this function, one should call the Module instance afterwards -instead of this since the former takes care of running the -registered hooks while the latter silently ignores them.

-
-
- -
- - - -
-
-transform(X, y=None)
-

Apply Table2GraphTransformer to each row of the data.

-
-

Parameters

-
-
Xpandas.DataFrame

Input data to transform.

-
-
yarray-like, optional

Target values, by default None.

-
-
-
-
-

Returns

-
-
data_graphlist

List of transformed graph objects.

-
-
-
-
- -
-
- -
-
-

carte_ai.src.evaluate_utils module

-
-
-carte_ai.src.evaluate_utils.check_pred_output(y_train, y_pred)
-

Set the output as the mean of train data if it is nan.

-
- -
-
-carte_ai.src.evaluate_utils.col_names_per_type(data, target_name)
-

Extract column names per type.

-
- -
-
-carte_ai.src.evaluate_utils.extract_best_params(data_name, method, num_train, random_state)
-

Extract the best parameters in the CARTE paper.

-
- -
-
-carte_ai.src.evaluate_utils.reshape_pred_output(y_pred)
-

Reshape the predictive output accordingly.

-
- -
-
-carte_ai.src.evaluate_utils.return_score(y_target, y_pred, task)
-

Return score results for given task.

-
- -
-
-carte_ai.src.evaluate_utils.set_score_criterion(task)
-

Set scoring method for CV and score criterion in final result.

-
- -
-
-carte_ai.src.evaluate_utils.set_split(data, data_config, num_train, random_state)
-

Set train/test split given the random state.

-
- -
-
-carte_ai.src.evaluate_utils.shorten_param(param_name)
-

Shorten the param_names for column names in search results.

-
- -
-
-

carte_ai.src.preprocess_utils module

-

Functions used for preprocessing the data.

-
-
-carte_ai.src.preprocess_utils.extract_fasttext_features(data: DataFrame, extract_col_name: str)
-
- -
-
-carte_ai.src.preprocess_utils.extract_ken_features(data: DataFrame, extract_col_name: str)
-
- -
-
-carte_ai.src.preprocess_utils.extract_llm_features(data: DataFrame, extract_col_name: str, device: str = 'cuda:0')
-
- -
-
-carte_ai.src.preprocess_utils.table2llmfeatures(data: DataFrame, embed_numeric: bool, device: str = 'cuda:0')
-
- -
-
-

carte_ai.src.visualization_utils module

-

Functions that can be utilized for visualization. -For Critical difference diagram, it modifies some of the codes from scikit-posthocs.

-
-
-carte_ai.src.visualization_utils.critical_difference_diagram(ranks: dict | Series, sig_matrix: DataFrame, *, ax: SubplotBase | None = None, label_fmt_left: str = '{label} ({rank:.2g})', label_fmt_right: str = '({rank:.2g}) {label}', label_props: dict | None = None, marker_props: dict | None = None, elbow_props: dict | None = None, crossbar_props: dict | None = None, color_palette: Dict[str, str] | List = {}, line_style: Dict[str, str] | List = {}, text_h_margin: float = 0.01) Dict[str, list]
-
- -
-
-carte_ai.src.visualization_utils.generate_df_cdd(df_normalized, train_size='all')
-
- -
-
-carte_ai.src.visualization_utils.prepare_result(task, models='all', rank_at=2048)
-
- -
-
-carte_ai.src.visualization_utils.sign_array(p_values: List | ndarray, alpha: float = 0.05) ndarray
-
- -
-
-carte_ai.src.visualization_utils.sign_plot(x: List | ndarray | DataFrame, g: List | ndarray | None = None, flat: bool = False, labels: bool = True, cmap: List | None = None, cbar_ax_bbox: List | None = None, ax: SubplotBase | None = None, **kwargs) SubplotBase | Tuple[SubplotBase, Colorbar]
-
- -
-
-carte_ai.src.visualization_utils.sign_table(p_values: List | ndarray | DataFrame, lower: bool = True, upper: bool = True) DataFrame | ndarray
-
- -
-
-

Module contents

-
-
- - -
-
-
- -
- -
-

© Copyright 2024, Myung Jun Kim, Leo Grinsztajn, Gaël Varoquaux.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
- - - - - - - - \ No newline at end of file diff --git a/docs/doctrees/carte_ai.configs.doctree b/docs/doctrees/carte_ai.configs.doctree deleted file mode 100644 index c83d7a3..0000000 Binary files a/docs/doctrees/carte_ai.configs.doctree and /dev/null differ diff --git a/docs/doctrees/carte_ai.data.doctree b/docs/doctrees/carte_ai.data.doctree deleted file mode 100644 index f33bdca..0000000 Binary files a/docs/doctrees/carte_ai.data.doctree and /dev/null differ diff --git a/docs/doctrees/carte_ai.doctree b/docs/doctrees/carte_ai.doctree deleted file mode 100644 index 8231cc6..0000000 Binary files a/docs/doctrees/carte_ai.doctree and /dev/null differ diff --git a/docs/doctrees/carte_ai.scripts.doctree b/docs/doctrees/carte_ai.scripts.doctree deleted file mode 100644 index 40075f7..0000000 Binary files a/docs/doctrees/carte_ai.scripts.doctree and /dev/null differ diff --git a/docs/doctrees/carte_ai.src.doctree b/docs/doctrees/carte_ai.src.doctree deleted file mode 100644 index b123786..0000000 Binary files a/docs/doctrees/carte_ai.src.doctree and /dev/null differ diff --git a/docs/doctrees/environment.pickle b/docs/doctrees/environment.pickle deleted file mode 100644 index bd3b45a..0000000 Binary files a/docs/doctrees/environment.pickle and /dev/null differ diff --git a/docs/doctrees/index.doctree b/docs/doctrees/index.doctree deleted file mode 100644 index 2724ae7..0000000 Binary files a/docs/doctrees/index.doctree and /dev/null differ diff --git a/docs/doctrees/modules.doctree b/docs/doctrees/modules.doctree deleted file mode 100644 index 6e49ee4..0000000 Binary files a/docs/doctrees/modules.doctree and /dev/null differ diff --git a/docs/genindex.html b/docs/genindex.html deleted file mode 100644 index 86ec65d..0000000 --- a/docs/genindex.html +++ /dev/null @@ -1,751 +0,0 @@ - - - - - - - - Index — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
    -
  • - -
  • -
  • -
-
-
-
-
- - -

Index

- -
- B - | C - | D - | E - | F - | G - | H - | I - | L - | M - | N - | P - | R - | S - | T - | W - | X - -
-

B

- - - -
- -

C

- - - -
- -

D

- - -
- -

E

- - - -
- -

F

- - -
- -

G

- - - -
- -

H

- - - -
- -

I

- - -
- -

L

- - - -
- -

M

- - -
- -

N

- - -
- -

P

- - - -
- -

R

- - - -
- -

S

- - - -
- -

T

- - - -
- -

W

- - - -
- -

X

- - - -
- - - -
-
-
- -
- -
-

© Copyright 2024, Myung Jun Kim, Leo Grinsztajn, Gaël Varoquaux.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
-
-
-
-
- - - - \ No newline at end of file diff --git a/docs/index.html b/docs/index.html deleted file mode 100644 index 866c438..0000000 --- a/docs/index.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - - - CARTE-AI Documentation — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - -
- - -
- -
-
-
- -
-
-
-
- -
-

Welcome to CARTE-AI documentation 📚!

-

CARTE Outline

- - - -

CARTE is a pretrained model for tabular data by treating each table row as a star graph and training a graph transformer on top of this representation.

- - -

Colab Examples (Give it a test):

- - Open In Colab - -
    -
  • CARTERegressor on Wine Poland dataset
  • -
  • CARTEClassifier on Spotify dataset
  • -
- - -

01 Install 🚀

-

The library has been tested on Linux, MacOSX, and Windows.

-

CARTE-AI can be installed from PyPI:

-

Installation

-
pip install CARTE-AI
-  
-
- -
-
-

Example of use of the library

-
import carte_ai
-  
-
- -

1️⃣ Load the Data 💽

-

-  import pandas as pd
-  from carte_ai.data.load_data import wina_pl
-  
-  num_train = 128  # Example: set the number of training groups/entities
-  random_state = 1  # Set a random seed for reproducibility
-  X_train, X_test, y_train, y_test = wina_pl(num_train, random_state)
-  print("Wina Poland dataset:", X_train.shape, X_test.shape)
-  
- - -

2️⃣ Convert Table 2 Graph 🪵

-

-  import fasttext
-  from huggingface_hub import hf_hub_download
-  from carte_ai import Table2GraphTransformer
-  
-  model_path = hf_hub_download(repo_id="hi-paris/fastText", filename="cc.en.300.bin")
-  
-  preprocessor = Table2GraphTransformer(fasttext_model_path=model_path)
-  
-  # Fit and transform the training data
-  X_train = preprocessor.fit_transform(X_train, y=y_train)
-  
-  # Transform the test data
-  X_test = preprocessor.transform(X_test)
-  
- - - -

3️⃣ Make Predictions🔮

-
from carte_ai import CARTERegressor, CARTEClassifier
-
-  # Define some parameters
-  fixed_params = dict()
-  fixed_params["num_model"] = 10 # 10 models for the bagging strategy
-  fixed_params["disable_pbar"] = False # True if you want cleanness
-  fixed_params["random_state"] = 0
-  fixed_params["device"] = "cpu"
-  fixed_params["n_jobs"] = 10
-  fixed_params["pretrained_model_path"] = config_directory["pretrained_model"]
-
-  # Define the estimator and run fit/predict
-  estimator = CARTERegressor(**fixed_params) # CARTERegressor for Regression
-  estimator.fit(X_train, y_train)
-  y_pred = estimator.predict(X_test)
-
-  # Obtain the r2 score on predictions
-  score = r2_score(y_test, y_pred)
-  print("\nThe R2 score for CARTE:", "{:.4f}".format(score))
-  
- - - - - -
-

Contents

- -
-
- - -
-
-
- -
- -
-

© Copyright 2024, Myung Jun Kim, Leo Grinsztajn, Gaël Varoquaux.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
-
-
-
-
- - - - \ No newline at end of file diff --git a/docs/make.bat b/docs/make.bat deleted file mode 100644 index 747ffb7..0000000 --- a/docs/make.bat +++ /dev/null @@ -1,35 +0,0 @@ -@ECHO OFF - -pushd %~dp0 - -REM Command file for Sphinx documentation - -if "%SPHINXBUILD%" == "" ( - set SPHINXBUILD=sphinx-build -) -set SOURCEDIR=source -set BUILDDIR=build - -%SPHINXBUILD% >NUL 2>NUL -if errorlevel 9009 ( - echo. - echo.The 'sphinx-build' command was not found. Make sure you have Sphinx - echo.installed, then set the SPHINXBUILD environment variable to point - echo.to the full path of the 'sphinx-build' executable. Alternatively you - echo.may add the Sphinx directory to PATH. - echo. - echo.If you don't have Sphinx installed, grab it from - echo.https://www.sphinx-doc.org/ - exit /b 1 -) - -if "%1" == "" goto help - -%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% -goto end - -:help -%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% - -:end -popd diff --git a/docs/modules.html b/docs/modules.html deleted file mode 100644 index 8a0af81..0000000 --- a/docs/modules.html +++ /dev/null @@ -1,441 +0,0 @@ - - - - - - - - - carte_ai — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
- -
-
-
-
- -
-

carte_ai

-
-

carte_ai Modules

-
-
- - -
-
- -
-
-
-
- - - - \ No newline at end of file diff --git a/docs/objects.inv b/docs/objects.inv deleted file mode 100644 index fd2139f..0000000 Binary files a/docs/objects.inv and /dev/null differ diff --git a/docs/py-modindex.html b/docs/py-modindex.html deleted file mode 100644 index 9f04eba..0000000 --- a/docs/py-modindex.html +++ /dev/null @@ -1,235 +0,0 @@ - - - - - - - - Python Module Index — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
    -
  • - -
  • -
  • -
-
-
-
-
- - -

Python Module Index

- -
- c -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
- c
- carte_ai -
    - carte_ai.configs -
    - carte_ai.configs.carte_configs -
    - carte_ai.configs.directory -
    - carte_ai.configs.model_parameters -
    - carte_ai.configs.visuailization -
    - carte_ai.data -
    - carte_ai.data.load_data -
    - carte_ai.scripts -
    - carte_ai.scripts.compile_results_singletable -
    - carte_ai.scripts.download_data -
    - carte_ai.scripts.evaluate_singletable -
    - carte_ai.scripts.preprocess_lm -
    - carte_ai.scripts.preprocess_raw -
    - carte_ai.src -
    - carte_ai.src.baseline_multitable -
    - carte_ai.src.baseline_singletable_nn -
    - carte_ai.src.carte_estimator -
    - carte_ai.src.carte_gridsearch -
    - carte_ai.src.carte_model -
    - carte_ai.src.carte_table_to_graph -
    - carte_ai.src.evaluate_utils -
    - carte_ai.src.preprocess_utils -
    - carte_ai.src.visualization_utils -
- - -
-
-
- -
- -
-

© Copyright 2024, Myung Jun Kim, Leo Grinsztajn, Gaël Varoquaux.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
-
-
-
-
- - - - \ No newline at end of file diff --git a/docs/search.html b/docs/search.html deleted file mode 100644 index 90bba07..0000000 --- a/docs/search.html +++ /dev/null @@ -1,120 +0,0 @@ - - - - - - - - Search — CARTE-AI 1.0.0 documentation - - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
    -
  • - -
  • -
  • -
-
-
-
-
- - - - -
- -
- -
-
-
- -
- -
-

© Copyright 2024, Myung Jun Kim, Leo Grinsztajn, Gaël Varoquaux.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
-
-
-
-
- - - - - - - - - \ No newline at end of file diff --git a/docs/searchindex.js b/docs/searchindex.js deleted file mode 100644 index 4d26a2d..0000000 --- a/docs/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({"alltitles": {"CARTE-AI Documentation": [[5, null]], "Contents": [[5, "contents"]], "Contents:": [[5, null]], "Module contents": [[0, "module-carte_ai"], [1, "module-carte_ai.configs"], [2, "module-carte_ai.data"], [3, "module-carte_ai.scripts"], [4, "module-carte_ai.src"]], "Parameters": [[4, "parameters"], [4, "id1"], [4, "id3"], [4, "id5"], [4, "id7"], [4, "id9"], [4, "id11"], [4, "id13"], [4, "id15"], [4, "id17"], [4, "id19"], [4, "id21"], [4, "id23"], [4, "id25"], [4, "id27"], [4, "id29"], [4, "id31"], [4, "id33"], [4, "id35"], [4, "id36"], [4, "id38"], [4, "id40"], [4, "id42"], [4, "id44"], [4, "id45"], [4, "id47"], [4, "id49"], [4, "id51"], [4, "id53"], [4, "id54"], [4, "id56"], [4, "id58"], [4, "id59"], [4, "id61"], [4, "id63"], [4, "id64"], [4, "id66"], [4, "id67"], [4, "id69"], [4, "id71"], [4, "id72"], [4, "id74"]], "Returns": [[4, "returns"], [4, "id2"], [4, "id4"], [4, "id6"], [4, "id8"], [4, "id10"], [4, "id12"], [4, "id14"], [4, "id16"], [4, "id18"], [4, "id20"], [4, "id22"], [4, "id24"], [4, "id26"], [4, "id28"], [4, "id30"], [4, "id32"], [4, "id34"], [4, "id37"], [4, "id39"], [4, "id41"], [4, "id43"], [4, "id46"], [4, "id48"], [4, "id50"], [4, "id52"], [4, "id55"], [4, "id57"], [4, "id60"], [4, "id62"], [4, "id65"], [4, "id68"], [4, "id70"], [4, "id73"], [4, "id75"]], "Submodules": [[1, "submodules"], [2, "submodules"], [3, "submodules"], [4, "submodules"]], "Subpackages": [[0, "subpackages"]], "carte_ai": [[6, null]], "carte_ai Modules": [[6, null]], "carte_ai package": [[0, null]], "carte_ai.configs package": [[1, null]], "carte_ai.configs.carte_configs module": [[1, "module-carte_ai.configs.carte_configs"]], "carte_ai.configs.directory module": [[1, "module-carte_ai.configs.directory"]], "carte_ai.configs.model_parameters module": [[1, "module-carte_ai.configs.model_parameters"]], "carte_ai.configs.visuailization module": [[1, "module-carte_ai.configs.visuailization"]], "carte_ai.data package": [[2, null]], "carte_ai.data.load_data module": [[2, "module-carte_ai.data.load_data"]], "carte_ai.scripts package": [[3, null]], "carte_ai.scripts.compile_results_singletable module": [[3, "module-carte_ai.scripts.compile_results_singletable"]], "carte_ai.scripts.download_data module": [[3, "module-carte_ai.scripts.download_data"]], "carte_ai.scripts.evaluate_singletable module": [[3, "module-carte_ai.scripts.evaluate_singletable"]], "carte_ai.scripts.preprocess_lm module": [[3, "module-carte_ai.scripts.preprocess_lm"]], "carte_ai.scripts.preprocess_raw module": [[3, "module-carte_ai.scripts.preprocess_raw"]], "carte_ai.src package": [[4, null]], "carte_ai.src.baseline_multitable module": [[4, "module-carte_ai.src.baseline_multitable"]], "carte_ai.src.baseline_singletable_nn module": [[4, "module-carte_ai.src.baseline_singletable_nn"]], "carte_ai.src.carte_estimator module": [[4, "module-carte_ai.src.carte_estimator"]], "carte_ai.src.carte_gridsearch module": [[4, "module-carte_ai.src.carte_gridsearch"]], "carte_ai.src.carte_model module": [[4, "module-carte_ai.src.carte_model"]], "carte_ai.src.carte_table_to_graph module": [[4, "module-carte_ai.src.carte_table_to_graph"]], "carte_ai.src.evaluate_utils module": [[4, "module-carte_ai.src.evaluate_utils"]], "carte_ai.src.preprocess_utils module": [[4, "module-carte_ai.src.preprocess_utils"]], "carte_ai.src.visualization_utils module": [[4, "module-carte_ai.src.visualization_utils"]]}, "docnames": ["carte_ai", "carte_ai.configs", "carte_ai.data", "carte_ai.scripts", "carte_ai.src", "index", "modules"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["carte_ai.rst", "carte_ai.configs.rst", "carte_ai.data.rst", "carte_ai.scripts.rst", "carte_ai.src.rst", "index.rst", "modules.rst"], "indexentries": {"basecarteestimator (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.BaseCARTEEstimator", false]], "basecartemultitableestimator (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.BaseCARTEMultitableEstimator", false]], "basemlpestimator (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.BaseMLPEstimator", false]], "baseresnetestimator (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.BaseRESNETEstimator", false]], "carte_ablationclassifier (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.CARTE_AblationClassifier", false]], "carte_ablationregressor (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.CARTE_AblationRegressor", false]], "carte_ai": [[0, "module-carte_ai", false]], "carte_ai.configs": [[1, "module-carte_ai.configs", false]], "carte_ai.configs.carte_configs": [[1, "module-carte_ai.configs.carte_configs", false]], "carte_ai.configs.directory": [[1, "module-carte_ai.configs.directory", false]], "carte_ai.configs.model_parameters": [[1, "module-carte_ai.configs.model_parameters", false]], "carte_ai.configs.visuailization": [[1, "module-carte_ai.configs.visuailization", false]], "carte_ai.data": [[2, "module-carte_ai.data", false]], "carte_ai.data.load_data": [[2, "module-carte_ai.data.load_data", false]], "carte_ai.scripts": [[3, "module-carte_ai.scripts", false]], "carte_ai.scripts.compile_results_singletable": [[3, "module-carte_ai.scripts.compile_results_singletable", false]], "carte_ai.scripts.download_data": [[3, "module-carte_ai.scripts.download_data", false]], "carte_ai.scripts.evaluate_singletable": [[3, "module-carte_ai.scripts.evaluate_singletable", false]], "carte_ai.scripts.preprocess_lm": [[3, "module-carte_ai.scripts.preprocess_lm", false]], "carte_ai.scripts.preprocess_raw": [[3, "module-carte_ai.scripts.preprocess_raw", false]], "carte_ai.src": [[4, "module-carte_ai.src", false]], "carte_ai.src.baseline_multitable": [[4, "module-carte_ai.src.baseline_multitable", false]], "carte_ai.src.baseline_singletable_nn": [[4, "module-carte_ai.src.baseline_singletable_nn", false]], "carte_ai.src.carte_estimator": [[4, "module-carte_ai.src.carte_estimator", false]], "carte_ai.src.carte_gridsearch": [[4, "module-carte_ai.src.carte_gridsearch", false]], "carte_ai.src.carte_model": [[4, "module-carte_ai.src.carte_model", false]], "carte_ai.src.carte_table_to_graph": [[4, "module-carte_ai.src.carte_table_to_graph", false]], "carte_ai.src.evaluate_utils": [[4, "module-carte_ai.src.evaluate_utils", false]], "carte_ai.src.preprocess_utils": [[4, "module-carte_ai.src.preprocess_utils", false]], "carte_ai.src.visualization_utils": [[4, "module-carte_ai.src.visualization_utils", false]], "carte_attention (class in carte_ai.src.carte_model)": [[4, "carte_ai.src.carte_model.CARTE_Attention", false]], "carte_base (class in carte_ai.src.carte_model)": [[4, "carte_ai.src.carte_model.CARTE_Base", false]], "carte_block (class in carte_ai.src.carte_model)": [[4, "carte_ai.src.carte_model.CARTE_Block", false]], "carte_contrast (class in carte_ai.src.carte_model)": [[4, "carte_ai.src.carte_model.CARTE_Contrast", false]], "carte_gridsearch() (in module carte_ai.src.carte_gridsearch)": [[4, "carte_ai.src.carte_gridsearch.carte_gridsearch", false]], "carte_nn_model (class in carte_ai.src.carte_model)": [[4, "carte_ai.src.carte_model.CARTE_NN_Model", false]], "carte_nn_model_ablation (class in carte_ai.src.carte_model)": [[4, "carte_ai.src.carte_model.CARTE_NN_Model_Ablation", false]], "carte_pretrain (class in carte_ai.src.carte_model)": [[4, "carte_ai.src.carte_model.CARTE_Pretrain", false]], "carteclassifier (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.CARTEClassifier", false]], "cartemultitableclassifer (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableClassifer", false]], "cartemultitableregressor (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableRegressor", false]], "carteregressor (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.CARTERegressor", false]], "catboostmultitableclassifier (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.CatBoostMultitableClassifier", false]], "catboostmultitableregressor (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.CatBoostMultitableRegressor", false]], "check_pred_output() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.check_pred_output", false]], "col_names_per_type() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.col_names_per_type", false]], "critical_difference_diagram() (in module carte_ai.src.visualization_utils)": [[4, "carte_ai.src.visualization_utils.critical_difference_diagram", false]], "data_preprocess() (in module carte_ai.scripts.preprocess_lm)": [[3, "carte_ai.scripts.preprocess_lm.data_preprocess", false]], "decision_function() (carte_ai.src.baseline_multitable.gradientboostingclassifierbase method)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingClassifierBase.decision_function", false]], "decision_function() (carte_ai.src.baseline_singletable_nn.mlpclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.MLPClassifier.decision_function", false]], "decision_function() (carte_ai.src.baseline_singletable_nn.resnetclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETClassifier.decision_function", false]], "decision_function() (carte_ai.src.carte_estimator.carteclassifier method)": [[4, "carte_ai.src.carte_estimator.CARTEClassifier.decision_function", false]], "decision_function() (carte_ai.src.carte_estimator.cartemultitableclassifer method)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableClassifer.decision_function", false]], "extract_best_params() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.extract_best_params", false]], "extract_fasttext_features() (in module carte_ai.src.preprocess_utils)": [[4, "carte_ai.src.preprocess_utils.extract_fasttext_features", false]], "extract_ken_features() (in module carte_ai.src.preprocess_utils)": [[4, "carte_ai.src.preprocess_utils.extract_ken_features", false]], "extract_llm_features() (in module carte_ai.src.preprocess_utils)": [[4, "carte_ai.src.preprocess_utils.extract_llm_features", false]], "fit() (carte_ai.src.baseline_multitable.gradientboostingmultitablebase method)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingMultitableBase.fit", false]], "fit() (carte_ai.src.baseline_singletable_nn.mlpbase method)": [[4, "carte_ai.src.baseline_singletable_nn.MLPBase.fit", false]], "fit() (carte_ai.src.carte_estimator.basecarteestimator method)": [[4, "carte_ai.src.carte_estimator.BaseCARTEEstimator.fit", false]], "fit() (carte_ai.src.carte_estimator.basecartemultitableestimator method)": [[4, "carte_ai.src.carte_estimator.BaseCARTEMultitableEstimator.fit", false]], "fit() (carte_ai.src.carte_table_to_graph.table2graphtransformer method)": [[4, "carte_ai.src.carte_table_to_graph.Table2GraphTransformer.fit", false]], "forward() (carte_ai.src.baseline_singletable_nn.mlp_model method)": [[4, "carte_ai.src.baseline_singletable_nn.MLP_Model.forward", false]], "forward() (carte_ai.src.baseline_singletable_nn.residual_block method)": [[4, "carte_ai.src.baseline_singletable_nn.Residual_Block.forward", false]], "forward() (carte_ai.src.baseline_singletable_nn.resnet_model method)": [[4, "carte_ai.src.baseline_singletable_nn.RESNET_Model.forward", false]], "forward() (carte_ai.src.carte_model.carte_attention method)": [[4, "carte_ai.src.carte_model.CARTE_Attention.forward", false]], "forward() (carte_ai.src.carte_model.carte_base method)": [[4, "carte_ai.src.carte_model.CARTE_Base.forward", false]], "forward() (carte_ai.src.carte_model.carte_block method)": [[4, "carte_ai.src.carte_model.CARTE_Block.forward", false]], "forward() (carte_ai.src.carte_model.carte_contrast method)": [[4, "carte_ai.src.carte_model.CARTE_Contrast.forward", false]], "forward() (carte_ai.src.carte_model.carte_nn_model method)": [[4, "carte_ai.src.carte_model.CARTE_NN_Model.forward", false]], "forward() (carte_ai.src.carte_model.carte_nn_model_ablation method)": [[4, "carte_ai.src.carte_model.CARTE_NN_Model_Ablation.forward", false]], "forward() (carte_ai.src.carte_model.carte_pretrain method)": [[4, "carte_ai.src.carte_model.CARTE_Pretrain.forward", false]], "generate_df_cdd() (in module carte_ai.src.visualization_utils)": [[4, "carte_ai.src.visualization_utils.generate_df_cdd", false]], "gradientboostingclassifierbase (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingClassifierBase", false]], "gradientboostingmultitablebase (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingMultitableBase", false]], "gradientboostingregressorbase (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingRegressorBase", false]], "histgbmultitableclassifier (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.HistGBMultitableClassifier", false]], "histgbmultitableregressor (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.HistGBMultitableRegressor", false]], "idxiterator (class in carte_ai.src.carte_estimator)": [[4, "carte_ai.src.carte_estimator.IdxIterator", false]], "load_parquet_config() (in module carte_ai.data.load_data)": [[2, "carte_ai.data.load_data.load_parquet_config", false]], "loguniform_int (class in carte_ai.configs.model_parameters)": [[1, "carte_ai.configs.model_parameters.loguniform_int", false]], "main() (in module carte_ai.scripts.download_data)": [[3, "carte_ai.scripts.download_data.main", false]], "main() (in module carte_ai.scripts.evaluate_singletable)": [[3, "carte_ai.scripts.evaluate_singletable.main", false]], "main() (in module carte_ai.scripts.preprocess_lm)": [[3, "carte_ai.scripts.preprocess_lm.main", false]], "main() (in module carte_ai.scripts.preprocess_raw)": [[3, "carte_ai.scripts.preprocess_raw.main", false]], "mlp_model (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.MLP_Model", false]], "mlpbase (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.MLPBase", false]], "mlpclassifier (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.MLPClassifier", false]], "mlpregressor (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.MLPRegressor", false]], "module": [[0, "module-carte_ai", false], [1, "module-carte_ai.configs", false], [1, "module-carte_ai.configs.carte_configs", false], [1, "module-carte_ai.configs.directory", false], [1, "module-carte_ai.configs.model_parameters", false], [1, "module-carte_ai.configs.visuailization", false], [2, "module-carte_ai.data", false], [2, "module-carte_ai.data.load_data", false], [3, "module-carte_ai.scripts", false], [3, "module-carte_ai.scripts.compile_results_singletable", false], [3, "module-carte_ai.scripts.download_data", false], [3, "module-carte_ai.scripts.evaluate_singletable", false], [3, "module-carte_ai.scripts.preprocess_lm", false], [3, "module-carte_ai.scripts.preprocess_raw", false], [4, "module-carte_ai.src", false], [4, "module-carte_ai.src.baseline_multitable", false], [4, "module-carte_ai.src.baseline_singletable_nn", false], [4, "module-carte_ai.src.carte_estimator", false], [4, "module-carte_ai.src.carte_gridsearch", false], [4, "module-carte_ai.src.carte_model", false], [4, "module-carte_ai.src.carte_table_to_graph", false], [4, "module-carte_ai.src.evaluate_utils", false], [4, "module-carte_ai.src.preprocess_utils", false], [4, "module-carte_ai.src.visualization_utils", false]], "norm_int (class in carte_ai.configs.model_parameters)": [[1, "carte_ai.configs.model_parameters.norm_int", false]], "predict() (carte_ai.src.baseline_multitable.gradientboostingclassifierbase method)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingClassifierBase.predict", false]], "predict() (carte_ai.src.baseline_multitable.gradientboostingregressorbase method)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingRegressorBase.predict", false]], "predict() (carte_ai.src.baseline_singletable_nn.mlpclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.MLPClassifier.predict", false]], "predict() (carte_ai.src.baseline_singletable_nn.mlpregressor method)": [[4, "carte_ai.src.baseline_singletable_nn.MLPRegressor.predict", false]], "predict() (carte_ai.src.baseline_singletable_nn.resnetclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETClassifier.predict", false]], "predict() (carte_ai.src.baseline_singletable_nn.resnetregressor method)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETRegressor.predict", false]], "predict() (carte_ai.src.carte_estimator.carteclassifier method)": [[4, "carte_ai.src.carte_estimator.CARTEClassifier.predict", false]], "predict() (carte_ai.src.carte_estimator.cartemultitableclassifer method)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableClassifer.predict", false]], "predict() (carte_ai.src.carte_estimator.cartemultitableregressor method)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableRegressor.predict", false]], "predict() (carte_ai.src.carte_estimator.carteregressor method)": [[4, "carte_ai.src.carte_estimator.CARTERegressor.predict", false]], "predict_proba() (carte_ai.src.baseline_multitable.gradientboostingclassifierbase method)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingClassifierBase.predict_proba", false]], "predict_proba() (carte_ai.src.baseline_singletable_nn.mlpclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.MLPClassifier.predict_proba", false]], "predict_proba() (carte_ai.src.baseline_singletable_nn.resnetclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETClassifier.predict_proba", false]], "predict_proba() (carte_ai.src.carte_estimator.carteclassifier method)": [[4, "carte_ai.src.carte_estimator.CARTEClassifier.predict_proba", false]], "predict_proba() (carte_ai.src.carte_estimator.cartemultitableclassifer method)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableClassifer.predict_proba", false]], "prepare_result() (in module carte_ai.src.visualization_utils)": [[4, "carte_ai.src.visualization_utils.prepare_result", false]], "preprocess_data() (in module carte_ai.scripts.preprocess_raw)": [[3, "carte_ai.scripts.preprocess_raw.preprocess_data", false]], "reset_parameters() (carte_ai.src.baseline_singletable_nn.residual_block method)": [[4, "carte_ai.src.baseline_singletable_nn.Residual_Block.reset_parameters", false]], "reset_parameters() (carte_ai.src.carte_model.carte_attention method)": [[4, "carte_ai.src.carte_model.CARTE_Attention.reset_parameters", false]], "reshape_pred_output() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.reshape_pred_output", false]], "residual_block (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.Residual_Block", false]], "resnet_model (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.RESNET_Model", false]], "resnetclassifier (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETClassifier", false]], "resnetregressor (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETRegressor", false]], "return_score() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.return_score", false]], "run_model() (in module carte_ai.scripts.evaluate_singletable)": [[3, "carte_ai.scripts.evaluate_singletable.run_model", false]], "rvs() (carte_ai.configs.model_parameters.loguniform_int method)": [[1, "carte_ai.configs.model_parameters.loguniform_int.rvs", false]], "rvs() (carte_ai.configs.model_parameters.norm_int method)": [[1, "carte_ai.configs.model_parameters.norm_int.rvs", false]], "sample() (carte_ai.src.carte_estimator.idxiterator method)": [[4, "carte_ai.src.carte_estimator.IdxIterator.sample", false]], "set_num_samples() (carte_ai.src.carte_estimator.idxiterator method)": [[4, "carte_ai.src.carte_estimator.IdxIterator.set_num_samples", false]], "set_score_criterion() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.set_score_criterion", false]], "set_score_request() (carte_ai.src.baseline_multitable.catboostmultitableclassifier method)": [[4, "carte_ai.src.baseline_multitable.CatBoostMultitableClassifier.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_multitable.catboostmultitableregressor method)": [[4, "carte_ai.src.baseline_multitable.CatBoostMultitableRegressor.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_multitable.gradientboostingclassifierbase method)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingClassifierBase.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_multitable.gradientboostingregressorbase method)": [[4, "carte_ai.src.baseline_multitable.GradientBoostingRegressorBase.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_multitable.histgbmultitableclassifier method)": [[4, "carte_ai.src.baseline_multitable.HistGBMultitableClassifier.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_multitable.histgbmultitableregressor method)": [[4, "carte_ai.src.baseline_multitable.HistGBMultitableRegressor.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_multitable.xgboostmultitableclassifier method)": [[4, "carte_ai.src.baseline_multitable.XGBoostMultitableClassifier.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_multitable.xgboostmultitableregressor method)": [[4, "carte_ai.src.baseline_multitable.XGBoostMultitableRegressor.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_singletable_nn.mlpclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.MLPClassifier.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_singletable_nn.mlpregressor method)": [[4, "carte_ai.src.baseline_singletable_nn.MLPRegressor.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_singletable_nn.resnetclassifier method)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETClassifier.set_score_request", false]], "set_score_request() (carte_ai.src.baseline_singletable_nn.resnetregressor method)": [[4, "carte_ai.src.baseline_singletable_nn.RESNETRegressor.set_score_request", false]], "set_score_request() (carte_ai.src.carte_estimator.carte_ablationclassifier method)": [[4, "carte_ai.src.carte_estimator.CARTE_AblationClassifier.set_score_request", false]], "set_score_request() (carte_ai.src.carte_estimator.carte_ablationregressor method)": [[4, "carte_ai.src.carte_estimator.CARTE_AblationRegressor.set_score_request", false]], "set_score_request() (carte_ai.src.carte_estimator.carteclassifier method)": [[4, "carte_ai.src.carte_estimator.CARTEClassifier.set_score_request", false]], "set_score_request() (carte_ai.src.carte_estimator.cartemultitableclassifer method)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableClassifer.set_score_request", false]], "set_score_request() (carte_ai.src.carte_estimator.cartemultitableregressor method)": [[4, "carte_ai.src.carte_estimator.CARTEMultitableRegressor.set_score_request", false]], "set_score_request() (carte_ai.src.carte_estimator.carteregressor method)": [[4, "carte_ai.src.carte_estimator.CARTERegressor.set_score_request", false]], "set_split() (in module carte_ai.data.load_data)": [[2, "carte_ai.data.load_data.set_split", false]], "set_split() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.set_split", false]], "shorten_param() (in module carte_ai.src.evaluate_utils)": [[4, "carte_ai.src.evaluate_utils.shorten_param", false]], "sign_array() (in module carte_ai.src.visualization_utils)": [[4, "carte_ai.src.visualization_utils.sign_array", false]], "sign_plot() (in module carte_ai.src.visualization_utils)": [[4, "carte_ai.src.visualization_utils.sign_plot", false]], "sign_table() (in module carte_ai.src.visualization_utils)": [[4, "carte_ai.src.visualization_utils.sign_table", false]], "spotify() (in module carte_ai.data.load_data)": [[2, "carte_ai.data.load_data.spotify", false]], "table2graphtransformer (class in carte_ai.src.carte_table_to_graph)": [[4, "carte_ai.src.carte_table_to_graph.Table2GraphTransformer", false]], "table2llmfeatures() (in module carte_ai.src.preprocess_utils)": [[4, "carte_ai.src.preprocess_utils.table2llmfeatures", false]], "tabulardataset (class in carte_ai.src.baseline_singletable_nn)": [[4, "carte_ai.src.baseline_singletable_nn.TabularDataset", false]], "transform() (carte_ai.src.carte_table_to_graph.table2graphtransformer method)": [[4, "carte_ai.src.carte_table_to_graph.Table2GraphTransformer.transform", false]], "wina_pl() (in module carte_ai.data.load_data)": [[2, "carte_ai.data.load_data.wina_pl", false]], "wine_dot_com_prices() (in module carte_ai.data.load_data)": [[2, "carte_ai.data.load_data.wine_dot_com_prices", false]], "wine_vivino_price() (in module carte_ai.data.load_data)": [[2, "carte_ai.data.load_data.wine_vivino_price", false]], "xgboostmultitableclassifier (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.XGBoostMultitableClassifier", false]], "xgboostmultitableregressor (class in carte_ai.src.baseline_multitable)": [[4, "carte_ai.src.baseline_multitable.XGBoostMultitableRegressor", false]]}, "objects": {"": [[0, 0, 0, "-", "carte_ai"]], "carte_ai": [[1, 0, 0, "-", "configs"], [2, 0, 0, "-", "data"], [3, 0, 0, "-", "scripts"], [4, 0, 0, "-", "src"]], "carte_ai.configs": [[1, 0, 0, "-", "carte_configs"], [1, 0, 0, "-", "directory"], [1, 0, 0, "-", "model_parameters"], [1, 0, 0, "-", "visuailization"]], "carte_ai.configs.model_parameters": [[1, 1, 1, "", "loguniform_int"], [1, 1, 1, "", "norm_int"]], "carte_ai.configs.model_parameters.loguniform_int": [[1, 2, 1, "", "rvs"]], "carte_ai.configs.model_parameters.norm_int": [[1, 2, 1, "", "rvs"]], "carte_ai.data": [[2, 0, 0, "-", "load_data"]], "carte_ai.data.load_data": [[2, 3, 1, "", "load_parquet_config"], [2, 3, 1, "", "set_split"], [2, 3, 1, "", "spotify"], [2, 3, 1, "", "wina_pl"], [2, 3, 1, "", "wine_dot_com_prices"], [2, 3, 1, "", "wine_vivino_price"]], "carte_ai.scripts": [[3, 0, 0, "-", "compile_results_singletable"], [3, 0, 0, "-", "download_data"], [3, 0, 0, "-", "evaluate_singletable"], [3, 0, 0, "-", "preprocess_lm"], [3, 0, 0, "-", "preprocess_raw"]], "carte_ai.scripts.download_data": [[3, 3, 1, "", "main"]], "carte_ai.scripts.evaluate_singletable": [[3, 3, 1, "", "main"], [3, 3, 1, "", "run_model"]], "carte_ai.scripts.preprocess_lm": [[3, 3, 1, "", "data_preprocess"], [3, 3, 1, "", "main"]], "carte_ai.scripts.preprocess_raw": [[3, 3, 1, "", "main"], [3, 3, 1, "", "preprocess_data"]], "carte_ai.src": [[4, 0, 0, "-", "baseline_multitable"], [4, 0, 0, "-", "baseline_singletable_nn"], [4, 0, 0, "-", "carte_estimator"], [4, 0, 0, "-", "carte_gridsearch"], [4, 0, 0, "-", "carte_model"], [4, 0, 0, "-", "carte_table_to_graph"], [4, 0, 0, "-", "evaluate_utils"], [4, 0, 0, "-", "preprocess_utils"], [4, 0, 0, "-", "visualization_utils"]], "carte_ai.src.baseline_multitable": [[4, 1, 1, "", "CatBoostMultitableClassifier"], [4, 1, 1, "", "CatBoostMultitableRegressor"], [4, 1, 1, "", "GradientBoostingClassifierBase"], [4, 1, 1, "", "GradientBoostingMultitableBase"], [4, 1, 1, "", "GradientBoostingRegressorBase"], [4, 1, 1, "", "HistGBMultitableClassifier"], [4, 1, 1, "", "HistGBMultitableRegressor"], [4, 1, 1, "", "XGBoostMultitableClassifier"], [4, 1, 1, "", "XGBoostMultitableRegressor"]], "carte_ai.src.baseline_multitable.CatBoostMultitableClassifier": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_multitable.CatBoostMultitableRegressor": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_multitable.GradientBoostingClassifierBase": [[4, 2, 1, "", "decision_function"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_multitable.GradientBoostingMultitableBase": [[4, 2, 1, "", "fit"]], "carte_ai.src.baseline_multitable.GradientBoostingRegressorBase": [[4, 2, 1, "", "predict"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_multitable.HistGBMultitableClassifier": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_multitable.HistGBMultitableRegressor": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_multitable.XGBoostMultitableClassifier": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_multitable.XGBoostMultitableRegressor": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_singletable_nn": [[4, 1, 1, "", "BaseMLPEstimator"], [4, 1, 1, "", "BaseRESNETEstimator"], [4, 1, 1, "", "MLPBase"], [4, 1, 1, "", "MLPClassifier"], [4, 1, 1, "", "MLPRegressor"], [4, 1, 1, "", "MLP_Model"], [4, 1, 1, "", "RESNETClassifier"], [4, 1, 1, "", "RESNETRegressor"], [4, 1, 1, "", "RESNET_Model"], [4, 1, 1, "", "Residual_Block"], [4, 1, 1, "", "TabularDataset"]], "carte_ai.src.baseline_singletable_nn.MLPBase": [[4, 2, 1, "", "fit"]], "carte_ai.src.baseline_singletable_nn.MLPClassifier": [[4, 2, 1, "", "decision_function"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_singletable_nn.MLPRegressor": [[4, 2, 1, "", "predict"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_singletable_nn.MLP_Model": [[4, 2, 1, "", "forward"]], "carte_ai.src.baseline_singletable_nn.RESNETClassifier": [[4, 2, 1, "", "decision_function"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_singletable_nn.RESNETRegressor": [[4, 2, 1, "", "predict"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.baseline_singletable_nn.RESNET_Model": [[4, 2, 1, "", "forward"]], "carte_ai.src.baseline_singletable_nn.Residual_Block": [[4, 2, 1, "", "forward"], [4, 2, 1, "", "reset_parameters"]], "carte_ai.src.carte_estimator": [[4, 1, 1, "", "BaseCARTEEstimator"], [4, 1, 1, "", "BaseCARTEMultitableEstimator"], [4, 1, 1, "", "CARTEClassifier"], [4, 1, 1, "", "CARTEMultitableClassifer"], [4, 1, 1, "", "CARTEMultitableRegressor"], [4, 1, 1, "", "CARTERegressor"], [4, 1, 1, "", "CARTE_AblationClassifier"], [4, 1, 1, "", "CARTE_AblationRegressor"], [4, 1, 1, "", "IdxIterator"]], "carte_ai.src.carte_estimator.BaseCARTEEstimator": [[4, 2, 1, "", "fit"]], "carte_ai.src.carte_estimator.BaseCARTEMultitableEstimator": [[4, 2, 1, "", "fit"]], "carte_ai.src.carte_estimator.CARTEClassifier": [[4, 2, 1, "", "decision_function"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.carte_estimator.CARTEMultitableClassifer": [[4, 2, 1, "", "decision_function"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.carte_estimator.CARTEMultitableRegressor": [[4, 2, 1, "", "predict"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.carte_estimator.CARTERegressor": [[4, 2, 1, "", "predict"], [4, 2, 1, "", "set_score_request"]], "carte_ai.src.carte_estimator.CARTE_AblationClassifier": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.carte_estimator.CARTE_AblationRegressor": [[4, 2, 1, "", "set_score_request"]], "carte_ai.src.carte_estimator.IdxIterator": [[4, 2, 1, "", "sample"], [4, 2, 1, "", "set_num_samples"]], "carte_ai.src.carte_gridsearch": [[4, 3, 1, "", "carte_gridsearch"]], "carte_ai.src.carte_model": [[4, 1, 1, "", "CARTE_Attention"], [4, 1, 1, "", "CARTE_Base"], [4, 1, 1, "", "CARTE_Block"], [4, 1, 1, "", "CARTE_Contrast"], [4, 1, 1, "", "CARTE_NN_Model"], [4, 1, 1, "", "CARTE_NN_Model_Ablation"], [4, 1, 1, "", "CARTE_Pretrain"]], "carte_ai.src.carte_model.CARTE_Attention": [[4, 2, 1, "", "forward"], [4, 2, 1, "", "reset_parameters"]], "carte_ai.src.carte_model.CARTE_Base": [[4, 2, 1, "", "forward"]], "carte_ai.src.carte_model.CARTE_Block": [[4, 2, 1, "", "forward"]], "carte_ai.src.carte_model.CARTE_Contrast": [[4, 2, 1, "", "forward"]], "carte_ai.src.carte_model.CARTE_NN_Model": [[4, 2, 1, "", "forward"]], "carte_ai.src.carte_model.CARTE_NN_Model_Ablation": [[4, 2, 1, "", "forward"]], "carte_ai.src.carte_model.CARTE_Pretrain": [[4, 2, 1, "", "forward"]], "carte_ai.src.carte_table_to_graph": [[4, 1, 1, "", "Table2GraphTransformer"]], "carte_ai.src.carte_table_to_graph.Table2GraphTransformer": [[4, 2, 1, "", "fit"], [4, 2, 1, "", "transform"]], "carte_ai.src.evaluate_utils": [[4, 3, 1, "", "check_pred_output"], [4, 3, 1, "", "col_names_per_type"], [4, 3, 1, "", "extract_best_params"], [4, 3, 1, "", "reshape_pred_output"], [4, 3, 1, "", "return_score"], [4, 3, 1, "", "set_score_criterion"], [4, 3, 1, "", "set_split"], [4, 3, 1, "", "shorten_param"]], "carte_ai.src.preprocess_utils": [[4, 3, 1, "", "extract_fasttext_features"], [4, 3, 1, "", "extract_ken_features"], [4, 3, 1, "", "extract_llm_features"], [4, 3, 1, "", "table2llmfeatures"]], "carte_ai.src.visualization_utils": [[4, 3, 1, "", "critical_difference_diagram"], [4, 3, 1, "", "generate_df_cdd"], [4, 3, 1, "", "prepare_result"], [4, 3, 1, "", "sign_array"], [4, 3, 1, "", "sign_plot"], [4, 3, 1, "", "sign_table"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"0": [3, 4], "001": 4, "01": 4, "03": 4, "05": 4, "1": 4, "10": 4, "100": 4, "1000": 4, "125": 4, "128": 4, "16": 4, "1e": 4, "2": 4, "20": 4, "200": 4, "2048": 4, "256": 4, "2g": 4, "3": 4, "300": 4, "31": 4, "4": 4, "40": 4, "42": 2, "5": 4, "500": 4, "6": 4, "For": 4, "If": 4, "The": 4, "ablat": 4, "ablation_method": 4, "absolute_error": 4, "accordingli": 4, "across": 4, "ad": 4, "adamw": 4, "afterward": 4, "alia": 4, "all": 4, "allow": 4, "alpha": 4, "although": 4, "an": 4, "appli": 4, "ar": 4, "arg": 1, "arrai": 4, "attent": 4, "attribut": 4, "auprc": 4, "auroc": 4, "averag": 4, "awar": 5, "ax": 4, "b": 1, "backpropag": 4, "bag": [3, 4], "bagging_temperatur": 4, "bar": 4, "base": [1, 4], "basecarteestim": [0, 4, 6], "basecartemultitableestim": [0, 4, 6], "baseestim": 4, "baselin": 4, "baseline_multit": [0, 6], "baseline_singletable_nn": [0, 6], "basemlpestim": [0, 4, 6], "baseresnetestim": [0, 4, 6], "batch": 4, "batch_siz": 4, "best": 4, "best_estim": 4, "best_param": 4, "binari": 4, "binary_crossentropi": 4, "binary_entropi": 4, "block_arg": 4, "bool": 4, "boost": 4, "call": 4, "can": 4, "care": 4, "cart": [1, 3, 4], "carte_ablationclassifi": [0, 4, 6], "carte_ablationregressor": [0, 4, 6], "carte_ai": 5, "carte_attent": [0, 4, 6], "carte_bas": [0, 4, 6], "carte_block": [0, 4, 6], "carte_config": [0, 6], "carte_contrast": [0, 4, 6], "carte_estim": [0, 6], "carte_gridsearch": [0, 6], "carte_model": [0, 6], "carte_nn_model": [0, 4, 6], "carte_nn_model_abl": [0, 4, 6], "carte_pretrain": [0, 4, 6], "carte_table_to_graph": [0, 6], "carteclassifi": [0, 4, 6], "cartegnn": 4, "cartemultitableclassif": [0, 4, 6], "cartemultitableregressor": [0, 4, 6], "carteregressor": [0, 4, 6], "catboost": 4, "catboostmultitableclassifi": [0, 4, 6], "catboostmultitableregressor": [0, 4, 6], "categorical_crossentropi": 4, "cbar_ax_bbox": 4, "chang": 4, "check_pred_output": [0, 4, 6], "choic": 3, "class": [1, 4], "classif": 4, "classifi": 4, "classifiermixin": 4, "cmap": 4, "code": 4, "col_names_per_typ": [0, 4, 6], "color_palett": 4, "colorbar": 4, "colsample_bylevel": 4, "colsample_bytre": 4, "column": 4, "com": 2, "comparison": 4, "compat": 4, "compile_results_singlet": [0, 6], "compl": 3, "compon": 4, "comput": 4, "concat": 4, "config": [0, 2, 5, 6], "config_data": 2, "configur": 1, "content": 6, "context": 5, "control": 4, "cpu": 4, "criterion": 4, "critic": 4, "critical_difference_diagram": [0, 4, 6], "cross": 4, "cross_valid": 4, "crossbar_prop": 4, "cuda": [3, 4], "custom": 4, "cv": 4, "data": [0, 3, 4, 5, 6], "data_config": 4, "data_graph": 4, "data_nam": [2, 3, 4], "data_name_list": 3, "data_preprocess": [0, 3, 6], "datafram": 4, "datalist": 3, "dataset": [2, 3, 4], "decis": 4, "decision_funct": [0, 4, 6], "default": 4, "defin": 4, "devic": [3, 4], "df_normal": 4, "diagram": 4, "dict": 4, "dictionari": 4, "differ": 4, "directori": [0, 6], "disable_pbar": 4, "distribut": 1, "domain_ind": 4, "download": 3, "download_data": [0, 6], "dropout": 4, "dropout_prob": 4, "e": 4, "each": 4, "earli": 4, "early_stopping_pati": 4, "edg": 4, "edge_attr": 4, "edge_index": 4, "effect": 4, "elbow_prop": 4, "embed_numer": 4, "emploi": 4, "enabl": 4, "enable_metadata_rout": 4, "encod": 4, "entri": 5, "env": 4, "epoch": 4, "error": 4, "estim": 4, "etc": 4, "evalu": 3, "evaluate_singlet": [0, 6], "evaluate_util": [0, 6], "everi": 4, "exclud": 4, "exist": 4, "experi": 3, "extract": 4, "extract_best_param": [0, 4, 6], "extract_col_nam": 4, "extract_fasttext_featur": [0, 4, 6], "extract_ken_featur": [0, 4, 6], "extract_llm_featur": [0, 4, 6], "fals": [3, 4], "fasttext": 4, "fasttext_model_path": 4, "fcclip_v2": 4, "ff_dim": 4, "file": 4, "final": 4, "fit": [0, 4, 6], "flat": 4, "float": 4, "former": 4, "forward": [0, 4, 6], "fraction": 4, "freez": 4, "freeze_pretrain": 4, "from": 4, "function": [2, 4], "g": 4, "gbrison": 4, "gener": 4, "generate_df_cdd": [0, 4, 6], "given": [2, 3, 4], "gnn": 4, "gpu": 4, "gradient": 4, "gradientboostingclassifierbas": [0, 4, 6], "gradientboostingmultitablebas": [0, 4, 6], "gradientboostingregressorbas": [0, 4, 6], "graph": 4, "grid": 4, "guid": 4, "ha": 4, "helper": 2, "hidden_dim": 4, "hidden_dropout_prob": 4, "hidden_factor": 4, "histgbmultitableclassifi": [0, 4, 6], "histgbmultitableregressor": [0, 4, 6], "historgram": 4, "home": 4, "hook": 4, "how": 4, "hyperparamet": 1, "i": 4, "idxiter": [0, 4, 6], "ignor": 4, "implement": 4, "includ": 4, "include_edge_attr": 4, "include_ken": 3, "include_raw": 3, "indic": 4, "infr": 4, "initi": 4, "input": 4, "input_dim": 4, "input_dim_": 4, "input_dim_x": 4, "insid": 4, "instanc": 4, "instead": 4, "int": 4, "integ": 1, "iter": 4, "job": 4, "json": 2, "kg_pretrain": 4, "kwarg": [1, 4], "l2_leaf_reg": 4, "l2_regular": 4, "label": 4, "label_fmt_left": 4, "label_fmt_right": 4, "label_prop": 4, "languag": 4, "latter": 4, "layer": 4, "layernorm": 4, "learn": 4, "learning_r": 4, "lib": 4, "like": 4, "line_styl": 4, "list": 4, "lm_model": 4, "load": [2, 4], "load_data": [0, 6], "load_parquet_config": [0, 2, 6], "load_pretrain": 4, "log": 1, "loguniform_int": [0, 1, 6], "loss": 4, "lower": 4, "main": [0, 3, 6], "marker_prop": 4, "max_depth": 4, "max_epoch": 4, "max_leaf_nod": 4, "maximum": 4, "mean": 4, "mechan": 4, "meta": 4, "metadata": 4, "metadata_rout": 4, "method": [3, 4], "min_child_weight": 4, "min_samples_leaf": 4, "miniconda3": 4, "mlp": 4, "mlp_model": [0, 4, 6], "mlpbase": [0, 4, 6], "mlpclassifi": [0, 4, 6], "mlpregressor": [0, 4, 6], "model": [3, 4], "model_paramet": [0, 6], "modifi": 4, "modul": [], "multipl": 4, "multit": 4, "n_batch": 4, "n_class": 4, "n_compon": 4, "n_estim": 4, "n_job": 4, "n_sampl": 4, "name": [3, 4], "nan": 4, "ndarrai": 4, "need": 4, "network": 4, "neural": 4, "nn": 4, "none": 4, "norm_int": [0, 1, 6], "normal": [1, 4], "note": 4, "num_head": 4, "num_lay": 4, "num_model": 4, "num_train": [2, 3, 4], "number": 4, "numpi": 4, "object": [1, 4], "obtain": 4, "one": 4, "one_hot_max_s": 4, "onli": 4, "optim": [1, 4], "optimi": 4, "option": [3, 4], "origin": 4, "other": 4, "otherwis": 4, "output": 4, "output_dim": 4, "over": 4, "overridden": 4, "p": 4, "p_valu": 4, "packag": [5, 6], "pairwis": 4, "panda": 4, "paper": [1, 4], "parallel": 4, "param_distribut": 4, "param_nam": 4, "paramet": 1, "parquet": 2, "pass": 4, "path": 4, "patienc": 4, "per": 4, "perform": 4, "pipelin": 4, "pleas": 4, "posthoc": 4, "predict": [0, 4, 6], "predict_proba": [0, 4, 6], "prepar": 3, "prepare_result": [0, 4, 6], "preprocess": [3, 4], "preprocess_data": [0, 3, 6], "preprocess_lm": [0, 6], "preprocess_raw": [0, 6], "preprocess_util": [0, 6], "pretrain": 4, "pretrained_model_path": 4, "price": 2, "probabl": 4, "problem": 4, "process": 4, "progress": 4, "project": 5, "provid": [4, 5], "pseudo": 4, "pt": 4, "python": 3, "python3": 4, "r2_score": 4, "rais": 4, "random": [1, 4], "random_st": [2, 3, 4], "rank": 4, "rank_at": 4, "rate": 4, "raw": 3, "read_out": 4, "recip": 4, "refit": 4, "reg_alpha": 4, "reg_gamma": 4, "reg_lambda": 4, "regist": 4, "regress": 4, "regressor": 4, "regressormixin": 4, "relev": 4, "represent": 5, "reproduc": 4, "request": 4, "requir": [3, 4], "reset_paramet": [0, 4, 6], "reshap": 4, "reshape_pred_output": [0, 4, 6], "residual_block": [0, 4, 6], "residual_dropout_prob": 4, "resnet": 4, "resnet_model": [0, 4, 6], "resnetclassifi": [0, 4, 6], "resnetregressor": [0, 4, 6], "result": [3, 4], "retain": 4, "return_attent": 4, "return_scor": [0, 4, 6], "rout": 4, "row": 4, "run": [3, 4], "run_model": [0, 3, 6], "rv": [0, 1, 6], "sampl": [0, 1, 4, 6], "sample_weight": 4, "scikit": 4, "score": 4, "script": [0, 5, 6], "search": 4, "see": 4, "self": 4, "seri": 4, "set": [3, 4], "set_config": 4, "set_num_sampl": [0, 4, 6], "set_score_criterion": [0, 4, 6], "set_score_request": [0, 4, 6], "set_split": [0, 2, 4, 6], "shape": 4, "shorten": 4, "shorten_param": [0, 4, 6], "should": 4, "show": 4, "sig_matrix": 4, "sign_arrai": [0, 4, 6], "sign_plot": [0, 4, 6], "sign_tabl": [0, 4, 6], "silent": 4, "sinc": 4, "singl": 3, "singlet": 4, "site": 4, "size": 4, "sklearn": 4, "some": 4, "sourc": 4, "source_d": 4, "source_data": 4, "source_fract": 4, "specif": [1, 3], "split": [2, 4], "spotifi": [0, 2, 6], "squared_error": 4, "src": [0, 5, 6], "state": 4, "stop": 4, "stoppingi": 4, "str": [3, 4], "strategi": 4, "studi": 4, "sub": 4, "subclass": 4, "submodul": [0, 6], "subpackag": 6, "subplotbas": 4, "subsampl": 4, "tabl": [3, 4, 5], "table2graphtransform": [0, 4, 6], "table2llmfeatur": [0, 4, 6], "tabulardataset": [0, 4, 6], "take": 4, "target": 4, "target_fract": 4, "target_nam": 4, "task": 4, "tensor": 4, "test": [2, 4], "text_h_margin": 4, "them": 4, "thi": [4, 5], "thread_count": 4, "through": 4, "total": 4, "train": [2, 4], "train_siz": 4, "transform": [0, 4, 6], "transformermixin": 4, "true": 4, "tupl": 4, "type": 4, "unchang": 4, "uniform": 1, "up": 4, "updat": 4, "upper": 4, "us": 4, "user": 4, "util": 4, "val_siz": 4, "valid": 4, "valu": [1, 4], "variabl": [1, 4], "version": [1, 4], "visuail": [0, 6], "visual": [1, 4], "visualization_util": [0, 6], "vivino": 2, "weight": 4, "weight_decai": 4, "welcom": 5, "when": 4, "whether": 4, "while": 4, "wina_pl": [0, 2, 6], "wine": 2, "wine_dot_com_pric": [0, 2, 6], "wine_vivino_pric": [0, 2, 6], "within": 4, "work": 4, "x": 4, "x_train": 4, "xgboost": 4, "xgboostmultitableclassifi": [0, 4, 6], "xgboostmultitableregressor": [0, 4, 6], "y": 4, "y_pred": 4, "y_target": 4, "y_train": 4, "you": 4}, "titles": ["carte_ai package", "carte_ai.configs package", "carte_ai.data package", "carte_ai.scripts package", "carte_ai.src package", "CARTE-AI Documentation", "carte_ai"], "titleterms": {"ai": 5, "baseline_multit": 4, "baseline_singletable_nn": 4, "cart": 5, "carte_ai": [0, 1, 2, 3, 4, 6], "carte_config": 1, "carte_estim": 4, "carte_gridsearch": 4, "carte_model": 4, "carte_table_to_graph": 4, "compile_results_singlet": 3, "config": 1, "content": [0, 1, 2, 3, 4, 5], "data": 2, "directori": 1, "document": 5, "download_data": 3, "evaluate_singlet": 3, "evaluate_util": 4, "load_data": 2, "model_paramet": 1, "modul": [0, 1, 2, 3, 4, 6], "packag": [0, 1, 2, 3, 4], "paramet": 4, "preprocess_lm": 3, "preprocess_raw": 3, "preprocess_util": 4, "return": 4, "script": 3, "src": 4, "submodul": [1, 2, 3, 4], "subpackag": 0, "visuail": 1, "visualization_util": 4}}) \ No newline at end of file