diff --git a/.github/workflows/macos_test_cases.yml b/.github/workflows/macos_test_cases.yml index 1123eec4..ff8b6e3c 100644 --- a/.github/workflows/macos_test_cases.yml +++ b/.github/workflows/macos_test_cases.yml @@ -1,6 +1,6 @@ # This starter workflow is for a CMake project running on a single platform. There is a different starter workflow if you need cross-platform coverage. # See: https://github.com/actions/starter-workflows/blob/main/ci/cmake-multi-platform.yml -name: macos-test-cases +name: macos-tests on: push: diff --git a/.github/workflows/ubuntu_test_cases.yml b/.github/workflows/ubuntu_test_cases.yml index 0cc23610..352a9ecd 100644 --- a/.github/workflows/ubuntu_test_cases.yml +++ b/.github/workflows/ubuntu_test_cases.yml @@ -1,4 +1,4 @@ -name: ubuntu-test-cases +name: ubuntu-tests on: push: diff --git a/README.md b/README.md index f1bebcf7..9d44bc77 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,8 @@ AlgoPlus is a C++ library that includes ready-to-use complex **data structures** ![Algoplus](https://github.com/CSRT-NTUA/AlgoPlus/blob/main/assets/logo.png) [![Gitpod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/CSRT-NTUA/AlgoPlus) +![macos-tests](https://github.com/CSRT-NTUA/AlgoPlus/actions/workflows/macos_test_cases.yml/badge.svg) +![ubuntu-tests](https://github.com/CSRT-NTUA/AlgoPlus/actions/workflows/ubuntu_test_cases.yml/badge.svg) [![CodeQL CI](https://github.com/TheAlgorithms/C-Plus-Plus/actions/workflows/codeql.yml/badge.svg)](https://github.com/CSRT-NTUA/AlgoPlus/actions/workflows/codeql.yml) [![codecov](https://codecov.io/gh/CSRT-NTUA/AlgoPlus/graph/badge.svg?token=3SBDRHUQR5)](https://codecov.io/gh/CSRT-NTUA/AlgoPlus) ![GitHub repo size](https://img.shields.io/github/repo-size/CSRT-NTUA/AlgoPlus) @@ -16,16 +18,19 @@ AlgoPlus is a C++ library that includes ready-to-use complex **data structures** ### Example: ```cpp -#include +#include // AlgoPlus now has Machine Learning classes! int main(){ std::vector > data; - int CLUSTERS; - kmeans a(data, CLUSTERS); ... - // returns the cluster centers and assignments of the kmeans clustering - std::pair >, std::map, int64_t> > ans = a.fit(); + // Eps = 4, MinPts = 3 + DBSCAN a(data, 4, 3); + + // returns the clusters and noise of the DBSCAN clustering + std::map, int64_t> clusters = a.get_clusters(); + std::vector > noise = a.get_noise(); + ... } #include