-
Notifications
You must be signed in to change notification settings - Fork 104
/
maj2random.c
255 lines (231 loc) · 6.76 KB
/
maj2random.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
* maj2random
*
* maj2random is a simplified floating point hash function derived from SHA-2,
* retaining its high quality entropy compression function modified to permute
* entropy from a vec2 (designed for UV coordinates) returning float values
* between 0.0 and 1.0. since maj2_random is a hash function it will return
* coherent noise. vector argument can be truncated prior to increase grain.
*
* maj2random is named after the maj mixing function called within the SHA-2
* round function and the 2 is becuase maj2random uses 2 rounds instead of 64.
* This seems to be sufficient to create visually diffuse noise with only 3%
* of the overhead of the full SHA-256 hashing function. maj2random also pays
* homage to arc4random due to the similarity of its name form.
*
* Source: https://github.com/michaeljclark/maj2random
*/
#include <math.h>
typedef unsigned uint;
typedef struct {
float a[2];
} vec2;
typedef struct {
uint a[2];
} uvec2;
/* first 8 rounds of the SHA-256 k constant */
static uint sha256_k[8] = {
0x428a2f98u, 0x71374491u, 0xb5c0fbcfu, 0xe9b5dba5u,
0x3956c25bu, 0x59f111f1u, 0x923f82a4u, 0xab1c5ed5u,
};
static uint ror(uint x, int d)
{
return (x >> d) | (x << (32 - d));
}
static uint sigma0(uint h1)
{
return ror(h1, 2) ^ ror(h1, 13) ^ ror(h1, 22);
}
static uint sigma1(uint h4)
{
return ror(h4, 6) ^ ror(h4, 11) ^ ror(h4, 25);
}
static uint ch(uint x, uint y, uint z)
{
return z ^ (x & (y ^ z));
}
static uint maj(uint x, uint y, uint z)
{
return (x & y) ^ ((x ^ y) & z);
}
static uint gamma0(uint a)
{
return ror(a, 7) ^ ror(a, 18) ^ (a >> 3);
}
static uint gamma1(uint b)
{
return ror(b, 17) ^ ror(b, 19) ^ (b >> 10);
}
static vec2 unorm(uvec2 n)
{
vec2 r = {(float) (n.a[0] & ((1u << 23) - 1u)) / (float) ((1u << 23) - 1u),
(float) (n.a[1] & ((1u << 23) - 1u)) / (float) ((1u << 23) - 1u)};
return r;
}
static uvec2 sign(vec2 v)
{
uvec2 r = {v.a[0] < 0.0f, v.a[1] < 0.0f};
return r;
}
static uvec2 maj_extract(vec2 uv)
{
/*
* extract 48-bits of entropy from mantissas to create truncated
* two word initialization vector 'W' composed using the 48-bits
* of 'uv' entropy rotated and copied to keep the field equalized.
* the exponent is ignored because the inputs are expected to be
* normalized 'uv' values such as texture coordinates. it would be
* beneficial to include the exponent entropy but we can't depend
* on frexp or ilogb and log2 would be inaccurate.
*/
uvec2 s = sign(uv);
uint x = (uint) (fabsf(uv.a[0]) * (float) (1u << 23)) | (s.a[0] << 23);
uint y = (uint) (fabsf(uv.a[1]) * (float) (1u << 23)) | (s.a[1] << 23);
uvec2 r = {(x) | (y << 24), (y >> 8) | (x << 16)};
return r;
}
static vec2 maj_random(vec2 uv, uint NROUNDS)
{
uint H[8] = {0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u};
uint W[2];
uvec2 st = maj_extract(uv);
W[0] = st.a[0];
W[1] = st.a[1];
for (uint i = 0; i < NROUNDS; i++) {
W[i & 1] = gamma1(W[(i - 2) & 1]) + W[(i - 7) & 1] +
gamma0(W[(i - 15) & 1]) + W[(i - 16) & 1];
}
/* we use N rounds instead of 64 and alternate 2 words of iv in W */
for (uint i = 0; i < NROUNDS; i++) {
uint T0 =
W[i & 1] + H[7] + sigma1(H[4]) + ch(H[4], H[5], H[6]) + sha256_k[i];
uint T1 = maj(H[0], H[1], H[2]) + sigma0(H[0]);
H[7] = H[6];
H[6] = H[5];
H[5] = H[4];
H[4] = H[3] + T0;
H[3] = H[2];
H[2] = H[1];
H[1] = H[0];
H[0] = T0 + T1;
}
uvec2 u = {H[0] ^ H[1] ^ H[2] ^ H[3], H[4] ^ H[5] ^ H[6] ^ H[7]};
return unorm(u);
}
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned long long ullong;
void sncatprintf(char *buf, size_t buflen, const char *fmt, int64_t n)
{
size_t len = strlen(buf);
snprintf(buf + len, buflen - len, fmt, n);
}
char *format_comma(int64_t n)
{
static char buf[65];
buf[0] = 0;
int n2 = 0;
int scale = 1;
if (n < 0) {
buf[0] = '-';
buf[1] = 0;
n = -n;
}
while (n >= 1000) {
n2 = n2 + scale * (n % 1000);
n /= 1000;
scale *= 1000;
}
sncatprintf(buf, sizeof(buf), "%d", n);
while (scale != 1) {
scale /= 1000;
n = n2 / scale;
n2 = n2 % scale;
sncatprintf(buf, sizeof(buf), ",%03d", n);
}
return buf;
}
char *format_rate(double rate)
{
static char buf[65];
char unit = ' ';
double divisor = 1;
if (rate > 1e9) {
divisor = 1e9;
unit = 'G';
} else if (rate > 1e6) {
divisor = 1e6;
unit = 'M';
} else if (rate > 1e3) {
divisor = 1e3;
unit = 'K';
}
snprintf(buf, sizeof(buf), "%.1f %c", rate / divisor, unit);
return buf;
}
vec2 f1(ullong i, ullong j)
{
return (vec2){0.0f, (float) i / (float) j};
}
vec2 f2(ullong i, ullong j)
{
return (vec2){(float) i / (float) j, 0.0f};
}
vec2 f3(ullong i, ullong j)
{
return (vec2){(float) i / (float) j, (float) i / (float) j};
}
void test_maj(const char *name,
int NROUNDS,
ullong count,
ullong range,
vec2 (*f)(ullong, ullong))
{
vec2 sum = {0.f, 0.f};
vec2 var = {0.f, 0.f};
fflush(stdout);
for (ullong i = 0; i < count; i++) {
vec2 p = f(i, range);
vec2 q = maj_random(p, NROUNDS);
sum.a[0] += q.a[0];
sum.a[1] += q.a[1];
var.a[0] += (q.a[0] - .5f) * (q.a[0] - .5f);
var.a[1] += (q.a[1] - .5f) * (q.a[1] - .5f);
}
printf("%-32s%12s%12.5f%12.5f%12.5f%12.5f%12.5f%12.5f\n", name,
format_comma(count), sum.a[0] / count, sum.a[1] / count,
var.a[0] / count, var.a[1] / count, sqrt(var.a[0] / count),
sqrt(var.a[1] / count));
}
void test_header(const char *name)
{
printf("%-32s%12s%12s%12s%12s%12s%12s%12s\n", name, "count", "mean(x)",
"mean(y)", "variance(x)", "variance(y)", "std-dev(x)", "std-dev(y)");
}
void run_all_tests(int NROUNDS, ullong i, ullong j)
{
char name[32];
snprintf(name, sizeof(name), "maj_random (NROUNDS=%d)", NROUNDS);
printf("\n");
test_header(name);
test_maj("( 0, (0 - 1K)/8K )", NROUNDS, i, j, f1);
test_maj("( 0, (0 - 8K)/8K )", NROUNDS, j, j, f1);
test_maj("( (0 - 1K)/8K ), 0 )", NROUNDS, i, j, f2);
test_maj("( (0 - 8K)/8K ), 0 )", NROUNDS, j, j, f2);
test_maj("( (0 - 1K)/8K ), (0 - 1K)/8K )", NROUNDS, i, j, f3);
test_maj("( (0 - 8K)/8K ), (0 - 8K)/8K )", NROUNDS, j, j, f3);
printf("\n");
}
int main(int argc, char **argv)
{
ullong i = 1000;
ullong j = 8000;
run_all_tests(2, i, j);
run_all_tests(4, i, j);
run_all_tests(6, i, j);
run_all_tests(8, i, j);
return 0;
}