-
Notifications
You must be signed in to change notification settings - Fork 7
/
optimization.py
401 lines (345 loc) · 17.2 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
from collections import defaultdict
from torch._six import container_abcs
from copy import deepcopy
from itertools import chain
def warmup_cosine(x, warmup=0.002):
if x < warmup:
return x/warmup
return 0.5 * (1.0 + torch.cos(math.pi * x))
def warmup_constant(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return max((x-1.)/(warmup-1.), 0)
SCHEDULES = {
'warmup_cosine': warmup_cosine,
'warmup_constant': warmup_constant,
'warmup_linear': warmup_linear,
}
class BertAdam(Optimizer):
"""Implements BERT version of Adam algorithm with weight decay fix.
Params:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate. Default: -1
schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
"""
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0):
if lr is not required and lr < 0.0:
raise ValueError(
"Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError(
"Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0:
raise ValueError(
"Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError(
"Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0:
raise ValueError(
"Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(BertAdam, self).__init__(params, defaults)
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled)
return lr
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(1 - beta1, grad)
next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss
class BertAdamFineTune(BertAdam):
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0):
self.init_param_group = []
super(BertAdamFineTune, self).__init__(params, lr, warmup,
t_total, schedule, b1, b2, e, weight_decay, max_grad_norm)
def save_init_param_group(self, param_groups, name_groups, missing_keys):
self.init_param_group = []
for group, name in zip(param_groups, name_groups):
if group['weight_decay'] > 0.0:
init_p_list = []
for p, n in zip(group['params'], name):
init_p = p.data.clone().detach()
if any(mk in n for mk in missing_keys):
print("[no finetuning weight decay]", n)
# should use the original weight decay
init_p.zero_()
init_p_list.append(init_p)
self.init_param_group.append(init_p_list)
else:
# placeholder
self.init_param_group.append([])
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for i_group, group in enumerate(self.param_groups):
for i_p, p in enumerate(group['params']):
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(1 - beta1, grad)
next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
if self.init_param_group:
update += group['weight_decay'] * \
(2.0 * p.data -
self.init_param_group[i_group][i_p])
else:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss
def load_state_dict_subset_finetune(self, state_dict, num_load_group):
r"""Loads the optimizer state.
Arguments:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
if len(groups) < num_load_group or len(saved_groups) < num_load_group:
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups[:num_load_group])
saved_lens = (len(g['params']) for g in saved_groups[:num_load_group])
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain(*(g['params'] for g in saved_groups[:num_load_group])),
chain(*(g['params'] for g in groups[:num_load_group])))}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
if param.is_floating_point():
value = value.to(param.dtype)
value = value.to(param.device)
return value
elif isinstance(value, dict):
return {k: cast(param, v) for k, v in value.items()}
elif isinstance(value, container_abcs.Iterable):
return type(value)(cast(param, v) for v in value)
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
else:
state[k] = v
# handle additional params
for k, v in self.state:
if k not in state:
state[k] = v
# do not change groups: {'weight_decay': 0.01, 'lr': 9.995e-06, 'schedule': 'warmup_linear', 'warmup': 0.1, 't_total': 400000, 'b1': 0.9, 'b2': 0.999, 'e': 1e-06, 'max_grad_norm': 1.0, 'params': [...]}
# # Update parameter groups, setting their 'params' value
# def update_group(group, new_group):
# new_group['params'] = group['params']
# return new_group
# param_groups = [
# update_group(g, ng) for g, ng in zip(groups[:num_load_group], saved_groups[:num_load_group])]
# # handle additional params
# param_groups.extend(groups[num_load_group:])
self.__setstate__({'state': state, 'param_groups': groups})
def find_state_dict_subset_finetune(org_state_dict, org_name_list, no_decay, param_optimizer):
# only use the bert encoder and embeddings
want_name_set = set()
for n in org_name_list:
if ('bert.encoder' in n) or ('bert.embeddings' in n):
want_name_set.add(n)
# original: name to pid, pid to name
org_grouped_names = [[n for n in org_name_list if not any(nd in n for nd in no_decay)],
[n for n in org_name_list if any(nd in n for nd in no_decay)]]
org_n2id, org_id2n = {}, {}
for ng, pg in zip(org_grouped_names, org_state_dict['param_groups']):
for n, pid in zip(ng, pg['params']):
org_n2id[n] = pid
org_id2n[pid] = n
# group by: whether pretrained; whether weight decay
g_np_list = [
[(n, p) for n, p in param_optimizer if n in want_name_set and not any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n in want_name_set and any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n not in want_name_set and not any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n not in want_name_set and any(
nd in n for nd in no_decay)],
]
optimizer_grouped_parameters = [
{'params': [p for n, p in g_np_list[0]], 'weight_decay': 0.01},
{'params': [p for n, p in g_np_list[1]], 'weight_decay': 0.0},
{'params': [p for n, p in g_np_list[2]], 'weight_decay': 0.01},
{'params': [p for n, p in g_np_list[3]], 'weight_decay': 0.0}
]
new_state_dict = {}
# regroup the original state_dict
new_state_dict['state'] = {pid: v for pid, v in org_state_dict['state'].items(
) if pid not in org_id2n or org_id2n[pid] in want_name_set}
# reset step count to 0
for pid, st in new_state_dict['state'].items():
st['step'] = 0
def _filter_group(group, g_np_list, i, org_n2id):
packed = {k: v for k, v in group.items() if k != 'params'}
packed['params'] = [pid for pid in group['params']
if pid in org_id2n and org_id2n[pid] in want_name_set]
assert len(g_np_list[i]) == len(packed['params'])
# keep them the same order
packed['params'] = [org_n2id[n] for n, p in g_np_list[i]]
return packed
new_state_dict['param_groups'] = [_filter_group(
g, g_np_list, i, org_n2id) for i, g in enumerate(org_state_dict['param_groups'])]
return new_state_dict, optimizer_grouped_parameters