forked from dbaranchuk/ivf-hnsw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndexIVF_HNSW_Grouping.cpp
592 lines (490 loc) · 25.3 KB
/
IndexIVF_HNSW_Grouping.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
#include "IndexIVF_HNSW_Grouping.h"
namespace ivfhnsw
{
//================================================
// IVF_HNSW + grouping( + pruning) implementation
//================================================
IndexIVF_HNSW_Grouping::IndexIVF_HNSW_Grouping(size_t dim, size_t ncentroids, size_t bytes_per_code,
size_t nbits_per_idx, size_t nsubcentroids):
IndexIVF_HNSW(dim, ncentroids, bytes_per_code, nbits_per_idx), nsubc(nsubcentroids)
{
alphas.resize(nc);
nn_centroid_idxs.resize(nc);
subgroup_sizes.resize(nc);
query_centroid_dists.resize(nc);
std::fill(query_centroid_dists.begin(), query_centroid_dists.end(), 0);
inter_centroid_dists.resize(nc);
}
void IndexIVF_HNSW_Grouping::add_group(size_t centroid_idx, size_t group_size,
const float *data, const idx_t *idxs)
{
// Find NN centroids to source centroid
const float *centroid = quantizer->getDataByInternalId(centroid_idx);
std::priority_queue<std::pair<float, idx_t>> nn_centroids_raw = quantizer->searchKnn(centroid, nsubc + 1);
std::vector<float> centroid_vector_norms_L2sqr(nsubc);
nn_centroid_idxs[centroid_idx].resize(nsubc);
while (nn_centroids_raw.size() > 1) {
centroid_vector_norms_L2sqr[nn_centroids_raw.size() - 2] = nn_centroids_raw.top().first;
nn_centroid_idxs[centroid_idx][nn_centroids_raw.size() - 2] = nn_centroids_raw.top().second;
nn_centroids_raw.pop();
}
if (group_size == 0)
return;
const float *centroid_vector_norms = centroid_vector_norms_L2sqr.data();
const idx_t *nn_centroids = nn_centroid_idxs[centroid_idx].data();
// Compute centroid-neighbor_centroid and centroid-group_point vectors
std::vector<float> centroid_vectors(nsubc * d);
for (size_t subc = 0; subc < nsubc; subc++) {
const float *neighbor_centroid = quantizer->getDataByInternalId(nn_centroids[subc]);
faiss::fvec_madd(d, neighbor_centroid, -1., centroid, centroid_vectors.data() + subc * d);
}
// Compute alpha for group vectors
alphas[centroid_idx] = compute_alpha(centroid_vectors.data(), data, centroid,
centroid_vector_norms, group_size);
// Compute final subcentroids
std::vector<float> subcentroids(nsubc * d);
for (size_t subc = 0; subc < nsubc; subc++) {
const float *centroid_vector = centroid_vectors.data() + subc * d;
float *subcentroid = subcentroids.data() + subc * d;
faiss::fvec_madd(d, centroid, alphas[centroid_idx], centroid_vector, subcentroid);
}
// Find subcentroid idx
std::vector<idx_t> subcentroid_idxs(group_size);
compute_subcentroid_idxs(subcentroid_idxs.data(), subcentroids.data(), data, group_size);
// Compute residuals
std::vector<float> residuals(group_size * d);
compute_residuals(group_size, data, residuals.data(), subcentroids.data(), subcentroid_idxs.data());
// Rotate residuals
if (do_opq){
std::vector<float> copy_residuals(group_size * d);
memcpy(copy_residuals.data(), residuals.data(), group_size * d * sizeof(float));
opq_matrix->apply_noalloc(group_size, copy_residuals.data(), residuals.data());
}
// Compute codes
std::vector<uint8_t> xcodes(group_size * code_size);
pq->compute_codes(residuals.data(), xcodes.data(), group_size);
// Decode codes
std::vector<float> decoded_residuals(group_size * d);
pq->decode(xcodes.data(), decoded_residuals.data(), group_size);
// Reverse rotation
if (do_opq){
std::vector<float> copy_decoded_residuals(group_size * d);
memcpy(copy_decoded_residuals.data(), decoded_residuals.data(), group_size * d * sizeof(float));
opq_matrix->transform_transpose(group_size, copy_decoded_residuals.data(), decoded_residuals.data());
}
// Reconstruct data
std::vector<float> reconstructed_x(group_size * d);
reconstruct(group_size, reconstructed_x.data(), decoded_residuals.data(),
subcentroids.data(), subcentroid_idxs.data());
// Compute norms
std::vector<float> norms(group_size);
faiss::fvec_norms_L2sqr(norms.data(), reconstructed_x.data(), d, group_size);
// Compute norm codes
std::vector<uint8_t> xnorm_codes(group_size);
norm_pq->compute_codes(norms.data(), xnorm_codes.data(), group_size);
// Distribute codes
std::vector<std::vector<idx_t> > construction_ids(nsubc);
std::vector<std::vector<uint8_t> > construction_codes(nsubc);
std::vector<std::vector<uint8_t> > construction_norm_codes(nsubc);
for (size_t i = 0; i < group_size; i++) {
idx_t idx = idxs[i];
idx_t subcentroid_idx = subcentroid_idxs[i];
construction_ids[subcentroid_idx].push_back(idx);
construction_norm_codes[subcentroid_idx].push_back(xnorm_codes[i]);
for (size_t j = 0; j < code_size; j++)
construction_codes[subcentroid_idx].push_back(xcodes[i * code_size + j]);
}
// Add codes to the index
for (size_t subc = 0; subc < nsubc; subc++) {
idx_t subgroup_size = construction_norm_codes[subc].size();
subgroup_sizes[centroid_idx].push_back(subgroup_size);
for (size_t i = 0; i < subgroup_size; i++) {
ids[centroid_idx].push_back(construction_ids[subc][i]);
for (size_t j = 0; j < code_size; j++)
codes[centroid_idx].push_back(construction_codes[subc][i * code_size + j]);
norm_codes[centroid_idx].push_back(construction_norm_codes[subc][i]);
}
}
}
/** Search procedure
*
* During the IVF-HNSW-PQ + Grouping search we compute
*
* d = || x - y_S - y_R ||^2
*
* where x is the query vector, y_S the coarse sub-centroid, y_R the
* refined PQ centroid. The expression can be decomposed as:
*
* d = (1 - α) * (|| x - y_C ||^2 - || y_C ||^2) + α * (|| x - y_N ||^2 - || y_N ||^2) + || y_S + y_R ||^2 - 2 * (x|y_R)
* ----------------------------------------- ----------------------------------- ----------------- -----------
* term 1 term 2 term 3 term 4
*
* We use the following decomposition:
* - term 1 is the distance to the coarse centroid, that is computed
* during the 1st stage search in the HNSW graph, minus the norm of the coarse centroid.
* - term 2 is the distance to y_N one of the <subc> nearest centroids,
* that is used for the sub-centroid computation, minus the norm of this centroid.
* - term 3 is the L2 norm of the reconstructed base point, that is computed at construction time, quantized
* using separately trained product quantizer for such norms and stored along with the residual PQ codes.
* - term 4 is the classical non-residual distance table.
*
* Norms of centroids are precomputed and saved without compression, as their memory consumption is negligible.
* If it is necessary, the norms can be added to the term 3 and compressed to byte together. We do not think that
* it will lead to considerable decrease in accuracy.
*
* Since y_R defined by a product quantizer, it is split across
* sub-vectors and stored separately for each sub-vector.
*/
void IndexIVF_HNSW_Grouping::search(size_t k, const float *x, float *distances, long *labels)
{
// Distances to subcentroids. Used for pruning.
std::vector<float> query_subcentroid_dists;
// Indices of coarse centroids, which distances to the query are computed during the search time
std::vector<idx_t> used_centroid_idxs;
used_centroid_idxs.reserve(nsubc * nprobe);
idx_t centroid_idxs[nprobe]; // Indices of the nearest coarse centroids
// For correct search using OPQ rotate a query
const float *query = (do_opq) ? opq_matrix->apply(1, x) : x;
// Find the nearest coarse centroids to the query
auto coarse = quantizer->searchKnn(query, nprobe);
for (int_fast32_t i = nprobe - 1; i >= 0; i--) {
idx_t centroid_idx = coarse.top().second;
centroid_idxs[i] = centroid_idx;
query_centroid_dists[centroid_idx] = coarse.top().first;
used_centroid_idxs.push_back(centroid_idx);
coarse.pop();
}
// Computing threshold for pruning
float threshold = 0.0;
if (do_pruning) {
size_t ncode = 0;
size_t nsubgroups = 0;
query_subcentroid_dists.resize(nsubc * nprobe);
float *qsd = query_subcentroid_dists.data();
for (size_t i = 0; i < nprobe; i++) {
const idx_t centroid_idx = centroid_idxs[i];
const size_t group_size = norm_codes[centroid_idx].size();
if (group_size == 0)
continue;
const float alpha = alphas[centroid_idx];
const float term1 = (1 - alpha) * query_centroid_dists[centroid_idx];
for (size_t subc = 0; subc < nsubc; subc++) {
if (subgroup_sizes[centroid_idx][subc] == 0)
continue;
const idx_t nn_centroid_idx = nn_centroid_idxs[centroid_idx][subc];
// Compute the distance to the coarse centroid if it is not computed
if (query_centroid_dists[nn_centroid_idx] < EPS) {
const float *nn_centroid = quantizer->getDataByInternalId(nn_centroid_idx);
query_centroid_dists[nn_centroid_idx] = fvec_L2sqr(query, nn_centroid, d);
used_centroid_idxs.push_back(nn_centroid_idx);
}
qsd[subc] = term1 - alpha * ((1 - alpha) * inter_centroid_dists[centroid_idx][subc]
- query_centroid_dists[nn_centroid_idx]);
threshold += qsd[subc];
nsubgroups++;
}
ncode += group_size;
qsd += nsubc;
if (ncode >= 2 * max_codes)
break;
}
threshold /= nsubgroups;
}
// Precompute table
pq->compute_inner_prod_table(query, precomputed_table.data());
// Prepare max heap with k answers
faiss::maxheap_heapify(k, distances, labels);
size_t ncode = 0;
const float *qsd = query_subcentroid_dists.data();
for (size_t i = 0; i < nprobe; i++) {
const idx_t centroid_idx = centroid_idxs[i];
const size_t group_size = norm_codes[centroid_idx].size();
if (group_size == 0)
continue;
const float alpha = alphas[centroid_idx];
const float term1 = (1 - alpha) * (query_centroid_dists[centroid_idx] - centroid_norms[centroid_idx]);
const uint8_t *code = codes[centroid_idx].data();
const uint8_t *norm_code = norm_codes[centroid_idx].data();
const idx_t *id = ids[centroid_idx].data();
for (size_t subc = 0; subc < nsubc; subc++) {
const size_t subgroup_size = subgroup_sizes[centroid_idx][subc];
if (subgroup_size == 0)
continue;
// Check pruning condition
if (!do_pruning || qsd[subc] < threshold) {
const idx_t nn_centroid_idx = nn_centroid_idxs[centroid_idx][subc];
// Compute the distance to the coarse centroid if it is not computed
if (query_centroid_dists[nn_centroid_idx] < EPS) {
const float *nn_centroid = quantizer->getDataByInternalId(nn_centroid_idx);
query_centroid_dists[nn_centroid_idx] = fvec_L2sqr(query, nn_centroid, d);
used_centroid_idxs.push_back(nn_centroid_idx);
}
const float term2 = alpha * (query_centroid_dists[nn_centroid_idx] - centroid_norms[nn_centroid_idx]);
norm_pq->decode(norm_code, norms.data(), subgroup_size);
for (size_t j = 0; j < subgroup_size; j++) {
const float term4 = 2 * pq_L2sqr(code + j * code_size);
const float dist = term1 + term2 + norms[j] - term4; //term3 = norms[j]
if (dist < distances[0]) {
faiss::maxheap_pop(k, distances, labels);
faiss::maxheap_push(k, distances, labels, dist, id[j]);
}
}
ncode += subgroup_size;
}
// Shift to the next group
code += subgroup_size * code_size;
norm_code += subgroup_size;
id += subgroup_size;
}
if (ncode >= max_codes)
break;
if (do_pruning)
qsd += nsubc;
}
// Zero computed dists for later queries
for (idx_t used_centroid_idx : used_centroid_idxs)
query_centroid_dists[used_centroid_idx] = 0;
if (do_opq)
delete const_cast<float *>(query);
}
void IndexIVF_HNSW_Grouping::write(const char *path_index)
{
std::ofstream output(path_index, std::ios::binary);
write_variable(output, d);
write_variable(output, nc);
write_variable(output, nsubc);
// Save vector indices
for (size_t i = 0; i < nc; i++)
write_vector(output, ids[i]);
// Save PQ codes
for (size_t i = 0; i < nc; i++)
write_vector(output, codes[i]);
// Save norm PQ codes
for (size_t i = 0; i < nc; i++)
write_vector(output, norm_codes[i]);
// Save NN centroid indices
for (size_t i = 0; i < nc; i++)
write_vector(output, nn_centroid_idxs[i]);
// Write group sizes
for (size_t i = 0; i < nc; i++)
write_vector(output, subgroup_sizes[i]);
// Save alphas
write_vector(output, alphas);
// Save centroid norms
write_vector(output, centroid_norms);
// Save inter centroid distances
for (size_t i = 0; i < nc; i++)
write_vector(output, inter_centroid_dists[i]);
}
void IndexIVF_HNSW_Grouping::read(const char *path_index)
{
std::ifstream input(path_index, std::ios::binary);
read_variable(input, d);
read_variable(input, nc);
read_variable(input, nsubc);
// Read ids
for (size_t i = 0; i < nc; i++)
read_vector(input, ids[i]);
// Read PQ codes
for (size_t i = 0; i < nc; i++)
read_vector(input, codes[i]);
// Read norm PQ codes
for (size_t i = 0; i < nc; i++)
read_vector(input, norm_codes[i]);
// Read NN centroid indices
for (size_t i = 0; i < nc; i++)
read_vector(input, nn_centroid_idxs[i]);
// Read group sizes
for (size_t i = 0; i < nc; i++)
read_vector(input, subgroup_sizes[i]);
// Read alphas
read_vector(input, alphas);
// Read centroid norms
read_vector(input, centroid_norms);
// Read inter centroid distances
for (size_t i = 0; i < nc; i++)
read_vector(input, inter_centroid_dists[i]);
}
void IndexIVF_HNSW_Grouping::train_pq(size_t n, const float *x)
{
std::vector<float> train_subcentroids;
std::vector<float> train_residuals;
train_subcentroids.reserve(n*d);
train_residuals.reserve(n*d);
std::vector<idx_t> assigned(n);
assign(n, x, assigned.data());
std::unordered_map<idx_t, std::vector<float>> group_map;
for (size_t i = 0; i < n; i++) {
const idx_t key = assigned[i];
for (size_t j = 0; j < d; j++)
group_map[key].push_back(x[i*d + j]);
}
// Train Residual PQ
std::cout << "Training Residual PQ codebook " << std::endl;
for (auto group : group_map) {
const idx_t centroid_idx = group.first;
const float *centroid = quantizer->getDataByInternalId(centroid_idx);
const std::vector<float> data = group.second;
const int group_size = data.size() / d;
std::vector<idx_t> nn_centroid_idxs(nsubc);
std::vector<float> centroid_vector_norms(nsubc);
auto nn_centroids_raw = quantizer->searchKnn(centroid, nsubc + 1);
while (nn_centroids_raw.size() > 1) {
centroid_vector_norms[nn_centroids_raw.size() - 2] = nn_centroids_raw.top().first;
nn_centroid_idxs[nn_centroids_raw.size() - 2] = nn_centroids_raw.top().second;
nn_centroids_raw.pop();
}
// Compute centroid-neighbor_centroid and centroid-group_point vectors
std::vector<float> centroid_vectors(nsubc * d);
for (size_t subc = 0; subc < nsubc; subc++) {
const float *nn_centroid = quantizer->getDataByInternalId(nn_centroid_idxs[subc]);
faiss::fvec_madd(d, nn_centroid, -1., centroid, centroid_vectors.data() + subc * d);
}
// Find alphas for vectors
const float alpha = compute_alpha(centroid_vectors.data(), data.data(), centroid,
centroid_vector_norms.data(), group_size);
// Compute final subcentroids
std::vector<float> subcentroids(nsubc * d);
for (size_t subc = 0; subc < nsubc; subc++)
faiss::fvec_madd(d, centroid, alpha, centroid_vectors.data() + subc*d, subcentroids.data() + subc*d);
// Find subcentroid idx
std::vector<idx_t> subcentroid_idxs(group_size);
compute_subcentroid_idxs(subcentroid_idxs.data(), subcentroids.data(), data.data(), group_size);
// Compute Residuals
std::vector<float> residuals(group_size * d);
compute_residuals(group_size, data.data(), residuals.data(), subcentroids.data(), subcentroid_idxs.data());
for (size_t i = 0; i < group_size; i++) {
const idx_t subcentroid_idx = subcentroid_idxs[i];
for (size_t j = 0; j < d; j++) {
train_subcentroids.push_back(subcentroids[subcentroid_idx*d + j]);
train_residuals.push_back(residuals[i*d + j]);
}
}
}
// Train OPQ rotation matrix and rotate residuals
if (do_opq){
faiss::OPQMatrix *matrix = new faiss::OPQMatrix(d, pq->M);
std::cout << "Training OPQ Matrix" << std::endl;
matrix->verbose = true;
matrix->max_train_points = n;
matrix->niter = 100;
matrix->train(n, train_residuals.data());
opq_matrix = matrix;
std::vector<float> copy_train_residuals(n * d);
memcpy(copy_train_residuals.data(), train_residuals.data(), n * d * sizeof(float));
opq_matrix->apply_noalloc(n, copy_train_residuals.data(), train_residuals.data());
}
printf("Training %zdx%zd PQ on %ld vectors in %dD\n", pq->M, pq->ksub, train_residuals.size() / d, d);
pq->verbose = true;
pq->train(n, train_residuals.data());
// Norm PQ
std::cout << "Training Norm PQ codebook " << std::endl;
std::vector<float> train_norms;
const float *residuals = train_residuals.data();
const float *subcentroids = train_subcentroids.data();
for (auto p : group_map) {
const std::vector<float> data = p.second;
const size_t group_size = data.size() / d;
// Compute Codes
std::vector<uint8_t> xcodes(group_size * code_size);
pq->compute_codes(residuals, xcodes.data(), group_size);
// Decode Codes
std::vector<float> decoded_residuals(group_size * d);
pq->decode(xcodes.data(), decoded_residuals.data(), group_size);
// Reverse rotation
if (do_opq){
std::vector<float> copy_decoded_residuals(group_size * d);
memcpy(copy_decoded_residuals.data(), decoded_residuals.data(), group_size * d * sizeof(float));
opq_matrix->transform_transpose(group_size, copy_decoded_residuals.data(), decoded_residuals.data());
}
// Reconstruct Data
std::vector<float> reconstructed_x(group_size * d);
for (size_t i = 0; i < group_size; i++)
faiss::fvec_madd(d, decoded_residuals.data() + i*d, 1., subcentroids+i*d, reconstructed_x.data() + i*d);
// Compute norms
std::vector<float> group_norms(group_size);
faiss::fvec_norms_L2sqr(group_norms.data(), reconstructed_x.data(), d, group_size);
for (size_t i = 0; i < group_size; i++)
train_norms.push_back(group_norms[i]);
residuals += group_size * d;
subcentroids += group_size * d;
}
printf("Training %zdx%zd PQ on %ld vectors in 1D\n", norm_pq->M, norm_pq->ksub, train_norms.size());
norm_pq->verbose = true;
norm_pq->train(n, train_norms.data());
}
void IndexIVF_HNSW_Grouping::compute_inter_centroid_dists()
{
for (size_t i = 0; i < nc; i++) {
const float *centroid = quantizer->getDataByInternalId(i);
inter_centroid_dists[i].resize(nsubc);
for (size_t subc = 0; subc < nsubc; subc++) {
const idx_t nn_centroid_idx = nn_centroid_idxs[i][subc];
const float *nn_centroid = quantizer->getDataByInternalId(nn_centroid_idx);
inter_centroid_dists[i][subc] = fvec_L2sqr(nn_centroid, centroid, d);
}
}
}
void IndexIVF_HNSW_Grouping::compute_residuals(size_t n, const float *x, float *residuals,
const float *subcentroids, const idx_t *keys)
{
for (size_t i = 0; i < n; i++) {
const float *subcentroid = subcentroids + keys[i]*d;
faiss::fvec_madd(d, x + i*d, -1., subcentroid, residuals + i*d);
}
}
void IndexIVF_HNSW_Grouping::reconstruct(size_t n, float *x, const float *decoded_residuals,
const float *subcentroids, const idx_t *keys)
{
for (size_t i = 0; i < n; i++) {
const float *subcentroid = subcentroids + keys[i] * d;
faiss::fvec_madd(d, decoded_residuals + i*d, 1., subcentroid, x + i*d);
}
}
void IndexIVF_HNSW_Grouping::compute_subcentroid_idxs(idx_t *subcentroid_idxs, const float *subcentroids,
const float *x, size_t group_size)
{
for (size_t i = 0; i < group_size; i++) {
float min_dist = 0.0;
idx_t min_idx = -1;
for (size_t subc = 0; subc < nsubc; subc++) {
const float *subcentroid = subcentroids + subc * d;
float dist = fvec_L2sqr(subcentroid, x + i*d, d);
if (min_idx == -1 || dist < min_dist){
min_dist = dist;
min_idx = subc;
}
}
subcentroid_idxs[i] = min_idx;
}
}
float IndexIVF_HNSW_Grouping::compute_alpha(const float *centroid_vectors, const float *points,
const float *centroid, const float *centroid_vector_norms_L2sqr,
size_t group_size)
{
float group_numerator = 0.0;
float group_denominator = 0.0;
std::vector<float> point_vectors(group_size * d);
for (size_t i = 0; i < group_size; i++)
faiss::fvec_madd(d, points + i*d , -1., centroid, point_vectors.data() + i*d);
for (size_t i = 0; i < group_size; i++) {
const float *point_vector = point_vectors.data() + i * d;
const float *point = points + i * d;
std::priority_queue<std::pair<float, std::pair<float, float>>> maxheap;
for (size_t subc = 0; subc < nsubc; subc++) {
const float *centroid_vector = centroid_vectors + subc * d;
float numerator = faiss::fvec_inner_product(centroid_vector, point_vector, d);
numerator = (numerator > 0) ? numerator : 0.0;
const float denominator = centroid_vector_norms_L2sqr[subc];
const float alpha = numerator / denominator;
std::vector<float> subcentroid(d);
faiss::fvec_madd(d, centroid, alpha, centroid_vector, subcentroid.data());
const float dist = fvec_L2sqr(point, subcentroid.data(), d);
maxheap.emplace(-dist, std::make_pair(numerator, denominator));
}
group_numerator += maxheap.top().second.first;
group_denominator += maxheap.top().second.second;
}
return (group_denominator > 0) ? group_numerator / group_denominator : 0.0;
}
}