Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error in PlotPCA3DScoreImg(mSet, "pca_score3d_0_", "png", 72, width = NA, :) Object 'cols' not found #315

Open
EugeneAeolus opened this issue Aug 6, 2024 · 1 comment

Comments

@EugeneAeolus
Copy link

Load MetaboAnalystR

library(MetaboAnalystR)

Clean global environment

rm(list = ls())
setwd("D:/MetaboAnalystR/PJ4")

mSet<-InitDataObjects("conc", "stat", FALSE);
mSet<-Read.TextData(mSet, "https://rest.xialab.ca/api/download/metaboanalyst/human_cachexia.csv", "rowu", "disc");
mSet<-SanityCheckData(mSet);
mSet<-ReplaceMin(mSet);
mSet<-PreparePrenormData(mSet);
mSet<-Normalization(mSet, "NULL", "LogNorm", "MeanCenter", "S10T0", ratio=FALSE, ratioNum=20);
mSet<-PlotNormSummary(mSet, "norm_0_", format ="png", dpi=72, width=NA);
mSet<-PlotSampleNormSummary(mSet, "snorm_0_", format = "png", dpi=72, width=NA);

Perform fold-change analysis on uploaded data, unpaired

mSet<-FC.Anal(mSet, 2.0, 0, FALSE)
mSet<-PlotFC(mSet, "fc_0_", "png", 72, width=NA)

Perform T-test (parametric)

mSet<-Ttests.Anal(mSet, nonpar=F, threshp=0.05, paired=FALSE, equal.var=TRUE, "fdr", TRUE)

Plot of the T-test results

mSet<-PlotTT(mSet, imgName = "tt_0_", format = "png", dpi = 72, width=NA)

Perform the volcano analysis

mSet<-Volcano.Anal(mSet, FALSE, 2.0, 0, F, 0.1, TRUE, "raw")

Create the volcano plot

mSet<-PlotVolcano(mSet, "volcano_0_", 1, 0, format ="png", dpi=72, width=NA)

OPTION 1 - Heatmap specifying pearson distance and an overview

mSet<-PlotCorrHeatMap(mSet, "corr_0_", "png", 72, width=NA, "col", "pearson", "bwm", "overview", FALSE, FALSE, 0.0)

OPTION 2 - Heatmap specifying pearson correlation and a detailed view

mSet<-PlotCorrHeatMap(mSet, "corr_1_", format = "png", dpi=72, width=NA, "col", "spearman", "bwm", "detail", F, F, 999)

Perform correlation analysis on a pattern (a feature of interest in this case)

mSet<-FeatureCorrelation(mSet, "pearson", "1,6-Anhydro-beta-D-glucose")

Plot the correlation analysis on a pattern

mSet<-PlotCorr(mSet, "ptn_3_", format="png", dpi=72, width=NA)

Perform PCA analysis

mSet<-PCA.Anal(mSet)

Create PCA overview

mSet<-PlotPCAPairSummary(mSet, "pca_pair_0_", format = "png", dpi = 72, width=NA, 5)

Create PCA scree plot

mSet<-PlotPCAScree(mSet, "pca_scree_0_", "png", dpi = 72, width=NA, 5)

Create a 2D PCA score plot

mSet<-PlotPCA2DScore(mSet, "pca_score2d_0_", format = "png", dpi=72, width=NA, 1, 2, 0.95, 1, 0)

Create a PCA loadings Plots

mSet<-PlotPCALoading(mSet, "pca_loading_0_", "png", 72, width=NA, 1,2);

Create a PCA Biplot

mSet<-PlotPCABiplot(mSet, "pca_biplot_0_", format = "png", dpi = 72, width=NA, 1, 2)

Create a 3D PCA score plot

mSet<-PlotPCA3DScoreImg(mSet, "pca_score3d_0_", "png", 72, width=NA, 1,2,3, 40)

View the 3D interactive PLS-DA score plot

mSet$imgSet$pca.3d

code is above,
PCA_2d is normal, PCA_3d raised an error as title.

@EugeneAeolus
Copy link
Author

Perform hierarchical clustering and plot dendogram

mSet<-PlotHCTree(mSet, "tree_0_", format = "png", dpi=72, width=NA, "euclidean", "ward.D")

Perform hierarchical clustering and plot heat map

mSet<-PlotHeatMap(mSet, "heatmap_0_", "png", 72, width=NA, "norm", "row", "euclidean", "ward.D","bwm", 8, "overview", T, T, NULL, T, F, T, T, T)

and in code above,
only creat 'tree_0_dpi72.png' and 'heatmap_0_.json', it seems not creat heatmap.png

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant