We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
library(MetaboAnalystR)
rm(list = ls()) setwd("D:/MetaboAnalystR/PJ4")
mSet<-InitDataObjects("conc", "stat", FALSE); mSet<-Read.TextData(mSet, "https://rest.xialab.ca/api/download/metaboanalyst/human_cachexia.csv", "rowu", "disc"); mSet<-SanityCheckData(mSet); mSet<-ReplaceMin(mSet); mSet<-PreparePrenormData(mSet); mSet<-Normalization(mSet, "NULL", "LogNorm", "MeanCenter", "S10T0", ratio=FALSE, ratioNum=20); mSet<-PlotNormSummary(mSet, "norm_0_", format ="png", dpi=72, width=NA); mSet<-PlotSampleNormSummary(mSet, "snorm_0_", format = "png", dpi=72, width=NA);
mSet<-FC.Anal(mSet, 2.0, 0, FALSE) mSet<-PlotFC(mSet, "fc_0_", "png", 72, width=NA)
mSet<-Ttests.Anal(mSet, nonpar=F, threshp=0.05, paired=FALSE, equal.var=TRUE, "fdr", TRUE)
mSet<-PlotTT(mSet, imgName = "tt_0_", format = "png", dpi = 72, width=NA)
mSet<-Volcano.Anal(mSet, FALSE, 2.0, 0, F, 0.1, TRUE, "raw")
mSet<-PlotVolcano(mSet, "volcano_0_", 1, 0, format ="png", dpi=72, width=NA)
mSet<-PlotCorrHeatMap(mSet, "corr_0_", "png", 72, width=NA, "col", "pearson", "bwm", "overview", FALSE, FALSE, 0.0)
mSet<-PlotCorrHeatMap(mSet, "corr_1_", format = "png", dpi=72, width=NA, "col", "spearman", "bwm", "detail", F, F, 999)
mSet<-FeatureCorrelation(mSet, "pearson", "1,6-Anhydro-beta-D-glucose")
mSet<-PlotCorr(mSet, "ptn_3_", format="png", dpi=72, width=NA)
mSet<-PCA.Anal(mSet)
mSet<-PlotPCAPairSummary(mSet, "pca_pair_0_", format = "png", dpi = 72, width=NA, 5)
mSet<-PlotPCAScree(mSet, "pca_scree_0_", "png", dpi = 72, width=NA, 5)
mSet<-PlotPCA2DScore(mSet, "pca_score2d_0_", format = "png", dpi=72, width=NA, 1, 2, 0.95, 1, 0)
mSet<-PlotPCALoading(mSet, "pca_loading_0_", "png", 72, width=NA, 1,2);
mSet<-PlotPCABiplot(mSet, "pca_biplot_0_", format = "png", dpi = 72, width=NA, 1, 2)
mSet<-PlotPCA3DScoreImg(mSet, "pca_score3d_0_", "png", 72, width=NA, 1,2,3, 40)
mSet$imgSet$pca.3d
code is above, PCA_2d is normal, PCA_3d raised an error as title.
The text was updated successfully, but these errors were encountered:
mSet<-PlotHCTree(mSet, "tree_0_", format = "png", dpi=72, width=NA, "euclidean", "ward.D")
mSet<-PlotHeatMap(mSet, "heatmap_0_", "png", 72, width=NA, "norm", "row", "euclidean", "ward.D","bwm", 8, "overview", T, T, NULL, T, F, T, T, T)
and in code above, only creat 'tree_0_dpi72.png' and 'heatmap_0_.json', it seems not creat heatmap.png
Sorry, something went wrong.
No branches or pull requests
Load MetaboAnalystR
library(MetaboAnalystR)
Clean global environment
rm(list = ls())
setwd("D:/MetaboAnalystR/PJ4")
mSet<-InitDataObjects("conc", "stat", FALSE);
mSet<-Read.TextData(mSet, "https://rest.xialab.ca/api/download/metaboanalyst/human_cachexia.csv", "rowu", "disc");
mSet<-SanityCheckData(mSet);
mSet<-ReplaceMin(mSet);
mSet<-PreparePrenormData(mSet);
mSet<-Normalization(mSet, "NULL", "LogNorm", "MeanCenter", "S10T0", ratio=FALSE, ratioNum=20);
mSet<-PlotNormSummary(mSet, "norm_0_", format ="png", dpi=72, width=NA);
mSet<-PlotSampleNormSummary(mSet, "snorm_0_", format = "png", dpi=72, width=NA);
Perform fold-change analysis on uploaded data, unpaired
mSet<-FC.Anal(mSet, 2.0, 0, FALSE)
mSet<-PlotFC(mSet, "fc_0_", "png", 72, width=NA)
Perform T-test (parametric)
mSet<-Ttests.Anal(mSet, nonpar=F, threshp=0.05, paired=FALSE, equal.var=TRUE, "fdr", TRUE)
Plot of the T-test results
mSet<-PlotTT(mSet, imgName = "tt_0_", format = "png", dpi = 72, width=NA)
Perform the volcano analysis
mSet<-Volcano.Anal(mSet, FALSE, 2.0, 0, F, 0.1, TRUE, "raw")
Create the volcano plot
mSet<-PlotVolcano(mSet, "volcano_0_", 1, 0, format ="png", dpi=72, width=NA)
OPTION 1 - Heatmap specifying pearson distance and an overview
mSet<-PlotCorrHeatMap(mSet, "corr_0_", "png", 72, width=NA, "col", "pearson", "bwm", "overview", FALSE, FALSE, 0.0)
OPTION 2 - Heatmap specifying pearson correlation and a detailed view
mSet<-PlotCorrHeatMap(mSet, "corr_1_", format = "png", dpi=72, width=NA, "col", "spearman", "bwm", "detail", F, F, 999)
Perform correlation analysis on a pattern (a feature of interest in this case)
mSet<-FeatureCorrelation(mSet, "pearson", "1,6-Anhydro-beta-D-glucose")
Plot the correlation analysis on a pattern
mSet<-PlotCorr(mSet, "ptn_3_", format="png", dpi=72, width=NA)
Perform PCA analysis
mSet<-PCA.Anal(mSet)
Create PCA overview
mSet<-PlotPCAPairSummary(mSet, "pca_pair_0_", format = "png", dpi = 72, width=NA, 5)
Create PCA scree plot
mSet<-PlotPCAScree(mSet, "pca_scree_0_", "png", dpi = 72, width=NA, 5)
Create a 2D PCA score plot
mSet<-PlotPCA2DScore(mSet, "pca_score2d_0_", format = "png", dpi=72, width=NA, 1, 2, 0.95, 1, 0)
Create a PCA loadings Plots
mSet<-PlotPCALoading(mSet, "pca_loading_0_", "png", 72, width=NA, 1,2);
Create a PCA Biplot
mSet<-PlotPCABiplot(mSet, "pca_biplot_0_", format = "png", dpi = 72, width=NA, 1, 2)
Create a 3D PCA score plot
mSet<-PlotPCA3DScoreImg(mSet, "pca_score3d_0_", "png", 72, width=NA, 1,2,3, 40)
View the 3D interactive PLS-DA score plot
mSet$imgSet$pca.3d
code is above,
PCA_2d is normal, PCA_3d raised an error as title.
The text was updated successfully, but these errors were encountered: