forked from jialinwu17/self_critical_vqa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
executable file
·120 lines (91 loc) · 2.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from __future__ import print_function
import errno
import os
from PIL import Image
import torch
import torch.nn as nn
import os
import json
import pickle as cPickle
import numpy as np
import utils
import h5py
#from pycocotools.coco import COCO
from scipy.sparse import coo_matrix
from sklearn.metrics.pairwise import cosine_similarity
EPS = 1e-7
def assert_eq(real, expected):
assert real == expected, '%s (true) vs %s (expected)' % (real, expected)
def assert_array_eq(real, expected):
assert (np.abs(real-expected) < EPS).all(), \
'%s (true) vs %s (expected)' % (real, expected)
def load_folder(folder, suffix):
imgs = []
for f in sorted(os.listdir(folder)):
if f.endswith(suffix):
imgs.append(os.path.join(folder, f))
return imgs
def load_imageid(folder):
images = load_folder(folder, 'jpg')
img_ids = set()
for img in images:
img_id = int(img.split('/')[-1].split('.')[0].split('_')[-1])
img_ids.add(img_id)
return img_ids
def pil_loader(path):
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def weights_init(m):
"""custom weights initialization."""
cname = m.__class__
if cname == nn.Linear or cname == nn.Conv2d or cname == nn.ConvTranspose2d:
m.weight.data.normal_(0.0, 0.02)
elif cname == nn.BatchNorm2d:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
else:
print('%s is not initialized.' % cname)
def init_net(net, net_file):
if net_file:
net.load_state_dict(torch.load(net_file))
else:
net.apply(weights_init)
def create_dir(path):
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
class Logger(object):
def __init__(self, output_name):
dirname = os.path.dirname(output_name)
if not os.path.exists(dirname):
os.mkdir(dirname)
self.log_file = open(output_name, 'w')
self.infos = {}
def append(self, key, val):
vals = self.infos.setdefault(key, [])
vals.append(val)
def log(self, extra_msg=''):
msgs = [extra_msg]
for key, vals in self.infos.iteritems():
msgs.append('%s %.6f' % (key, np.mean(vals)))
msg = '\n'.join(msgs)
self.log_file.write(msg + '\n')
self.log_file.flush()
self.infos = {}
return msg
def write(self, msg):
self.log_file.write(msg + '\n')
self.log_file.flush()
print(msg)
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)