This repository has been archived by the owner on Nov 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 40
/
prepare.py
79 lines (72 loc) · 4.04 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import cv2
import numpy as np
def read_image_mask(fragment_id,start_idx=15,end_idx=45):
fragment_id_ = fragment_id.split("_")[0]
images = []
# idxs = range(65)
mid = 65 // 2
idxs = range(start_idx, end_idx)
for i in idxs:
if os.path.exists(f"train_scrolls/{fragment_id}/layers/{i:02}.tif"):
image = cv2.imread(f"train_scrolls/{fragment_id}/layers/{i:02}.tif", 0)
print(np.max(image))
else:
image = cv2.imread( f"train_scrolls/{fragment_id}/layers/{i:02}.jpg", 0)
print(np.max(image))
pad0 = (256 - image.shape[0] % 256)
pad1 = (256 - image.shape[1] % 256)
image = np.pad(image, [(0, pad0), (0, pad1)], constant_values=0)
# image = ndimage.median_filter(image, size=5)
# image = cv2.resize(image, (image.shape[1]//2,image.shape[0]//2), interpolation = cv2.INTER_AREA)
image=np.clip(image,0,200)
images.append(image)
images = np.stack(images, axis=2)
if fragment_id_ in ['20230701020044','verso','20230901184804','20230901234823','20230531193658','20231007101615','20231005123333','20231011144857','20230522215721', '20230919113918', '20230625171244','20231022170900','20231012173610','20231016151000']:
images=images[:,:,::-1]
if fragment_id_ in ['20231022170901','20231022170900']:
mask = cv2.imread( f"train_scrolls/{fragment_id}/{fragment_id_}_inklabels.tiff", 0)
else:
mask = cv2.imread(f"train_scrolls/{fragment_id}/{fragment_id_}_inklabels.png", 0)
fragment_mask=cv2.imread( f"train_scrolls/{fragment_id}/{fragment_id_}_mask.png", 0)
fragment_mask = np.pad(fragment_mask, [(0, pad0), (0, pad1)], constant_values=0)
mask = mask.astype('float32')
mask/=255
return images, mask,fragment_mask
def run_sanity_checks():
for fragment_id in ['20231210121321','20231106155350','20231005123336','20230820203112','20230620230619','20230826170124','20230702185753','20230522215721','20230531193658','20230520175435','20230903193206','20230902141231','20231007101615','20230929220924','recto','verso','20231016151000','20231012184423','20231031143850']:
fragment_id_ = "_".join(fragment_id.split("_")[:min(1, len(fragment_id)-1)])
print(fragment_id)
if not os.path.exists(f'train_scrolls/{fragment_id_}'):
fragment_id_ += "_superseded"
assert os.path.exists(f'train_scrolls/{fragment_id_}/layers/00.tif') or os.path.exists(f'train_scrolls/{fragment_id_}/layers/00.jpg'), f"Fragment id {fragment_id_} has no surface volume"
assert os.path.exists(f'train_scrolls/{fragment_id_}/{fragment_id}_inklabels.png')
assert os.path.exists(f'train_scrolls/{fragment_id_}/{fragment_id}_mask.png')
assert os.path.exists(f'train_scrolls/20231022170901/layers/00.tif')
assert os.path.exists(f'train_scrolls/20231022170901/20231022170901_inklabels.tiff')
assert os.path.exists(f'train_scrolls/20231022170901/20231022170901_mask.png')
def prepare_data():
for l in os.listdir('all_labels/'):
if '.png' in l:
f_id = l[:-14]
f_id_ = f_id
if not os.path.exists(f'train_scrolls/{f_id}'):
f_id_ = f_id + "_superseded"
if os.path.exists(f'train_scrolls/{f_id_}'):
img=cv2.imread(f'all_labels/{f_id}_inklabels.png', 0)
cv2.imwrite(f"train_scrolls/{f_id_}/{f_id}_inklabels.png", img)
else:
print(f"couldnt find {f_id_}")
if '.tiff' in l:
f_id = l[:-15]
f_id_ = f_id
if not os.path.exists(f'train_scrolls/{f_id}'):
f_id_ = f_id + "_superseded"
if os.path.exists(f'train_scrolls/{f_id_}'):
img=cv2.imread(f'all_labels/{f_id}_inklabels.tiff', 0)
cv2.imwrite(f"train_scrolls/{f_id_}/{f_id}_inklabels.tiff", img)
else:
print(f"couldnt find {f_id_}")
if __name__ == "__main__":
prepare_data()
run_sanity_checks()