forked from submaps/trajectory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
form_qt.py
executable file
·652 lines (531 loc) · 26.2 KB
/
form_qt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# -*- coding:utf8 -*-
import sys
import numpy as np
from PyQt4 import QtGui
from PyQt4 import QtCore
import logging
from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg \
import FigureCanvasQTAgg as FigureCanvas
from failure_criteria import FailureCriteria
from failure_criteria_graph import *
from config import *
from section_test import *
from trace_checker import calculate_section_at_well
from stress_cyl import *
class Monitor(FigureCanvas, QtCore.QObject):
def __init__(self, cur_section_cyl):
self.fig = Figure()
# initialize the figure canvas
FigureCanvas.__init__(self, self.fig)
self.drawPlot(cur_section_cyl)
# self.fig = Figure(facecolor='#E8D6BB', edgecolor='#000000')
# self.fig = Figure()
# self.ax = self.fig.add_subplot(111)
#
# # initialize the figure canvas
# FigureCanvas.__init__(self, self.fig)
#
# # set up the display limits for the figure
# self.ax.set_xlim(0, 30)
# self.ax.set_ylim(0, 1)
#
# # turn off autoscaling
# self.ax.set_autoscale_on(False)
# line, = self.ax.plot(np.random.rand(100), 'o', picker=5)
# self.fig.canvas.draw()
# self.stopButtonAction = False
def drawPlot(self, cur_section_cyl):
self.cur_section_cyl = cur_section_cyl
r_grid, theta_grid = np.meshgrid(r_vector, theta_vector)
# размерность сетки # 100, 25
Rw = cur_section_cyl.Rw
i = cur_section_cyl.i
pw = cur_section_cyl.pw
z = cur_section_cyl.z
title1 = r'$\sigma_r$'
title2 = r'$\sigma_\theta$'
title3 = r'$\sigma_z$'
title4 = r'$\tau_{r\theta}$'
title5 = r'$\tau_{\theta z}$'
title6 = r'$\tau_{rz}$'
s_r_data = cur_section_cyl.s_r
s_theta_data = cur_section_cyl.s_theta
s_z_data = cur_section_cyl.s_z
t_r_theta_data = cur_section_cyl.t_r_theta
t_theta_z_data = cur_section_cyl.t_theta_z
t_r_z_data = cur_section_cyl.t_r_z
title_size = 20
title_position_x = -0.6
title_position_y = 1
ax1 = self.fig.add_subplot(331, polar=True)
self.prepare_one_ax_for_canvas(ax1, theta_grid, r_grid, s_r_data, title1, title_size, Rw,
title_position_x,
title_position_y)
ax2 = self.fig.add_subplot(334, polar=True)
self.prepare_one_ax_for_canvas(ax2, theta_grid, r_grid, s_theta_data, title2, title_size, Rw,
title_position_x,
title_position_y)
ax3 = self.fig.add_subplot(337, polar=True)
self.prepare_one_ax_for_canvas(ax3, theta_grid, r_grid, s_z_data, title3, title_size, Rw,
title_position_x,
title_position_y)
ax4 = self.fig.add_subplot(333, polar=True)
self.prepare_one_ax_for_canvas(ax4, theta_grid, r_grid, t_r_theta_data, title4, title_size, Rw,
title_position_x,
title_position_y)
ax5 = self.fig.add_subplot(336, polar=True)
self.prepare_one_ax_for_canvas(ax5, theta_grid, r_grid, t_theta_z_data, title5, title_size, Rw,
title_position_x,
title_position_y)
ax6 = self.fig.add_subplot(339, polar=True)
self.prepare_one_ax_for_canvas(ax6, theta_grid, r_grid, t_r_z_data, title6, title_size, Rw,
title_position_x,
title_position_y)
self.fig.text(
0.45, 0.1,
"i=" + str(round(i * 180 / np.pi, 2)) + "\npw=" + str(round(pw / 100000, 2)) + " atm\n" + str(z) + " m",
horizontalalignment='left',
fontsize=15,
transform=ax1.transAxes
)
self.fig.canvas.draw()
self.fig.set_label("Main graph")
def prepare_one_ax_for_canvas(self, ax, theta_grid, r_grid, data, title, title_size, Rw, title_position_x,
title_position_y):
# color_mesh = fig.matrix_axes.pcolormesh(data, cmap=color_map)
##
# add tick labels
# self.matrix_axes.set_yticklabels(labels_y)
# self.matrix_axes.set_xticklabels(labels_x)
# self.figure.autofmt_xdate(rotation=30) # rotate x axis labels to fit more
# plot color bar
# colorbar = self.figure.colorbar(color_mesh, cax=self.color_axes, orientation='vertical')
##
ax.set_theta_offset(np.pi / 2)
ax.set_theta_direction(-1)
# color_mesh = self.matrix_axes.pcolormesh(data, cmap=color_map)
color_mesh = ax.pcolormesh(theta_grid, r_grid, data)
# self.pcolormesh(theta_grid, r_grid, data)
colorbar = self.figure.colorbar(color_mesh)
# colorbar = self.figure.colorbar(color_mesh, cax=self.color_axes, orientation='vertical')
# self.colorbar(pad=0.1)
# pl.clim(minval, maxval)
ax.set_thetagrids(np.array([0, 90, 180, 270]), ['0', '90', '180', '270'])
# ax.set_thetagrids(np.array([0, 90, 180, 270]), ['0', '90', '180', '270'],fontsize=8)
# ax.set_rgrids(radii=[Rw * 1, Rw * 2], labels=['1', ' 2 '], angle=90, fontsize=15)
# ax.set_rgrids(radii=[Rw * 1, Rw * 2], labels=['$R_w$', '$2R_w$'], angle=90, fontsize=8)
ax.set_rgrids(radii=[Rw * 1, Rw * 2], angle=90, fontsize=8)
# ax.set_rgrids(radii=[Rw * 1, Rw * 2], labels=['', ''], angle=90, fontsize=8)
ax.grid(True, color='black', linestyle='-', linewidth=1, axis='y')
self.fig.text(title_position_x, title_position_y,
title,
horizontalalignment='left',
fontsize = title_size,
transform = ax.transAxes)
ax.set_title(title,loc='left')
def updatePlot(self, cur_section_cyl):
self.fig.clear()
self.drawPlot(cur_section_cyl)
self.fig.canvas.draw()
@QtCore.pyqtSignature("")
def zoomIn(self):
"""
Увеличиваем в 2 раза
"""
self.stopButtonAction = True
while self.stopButtonAction:
start, end = self.ax.get_xaxis().get_view_interval()
print start, end, end - start
if (end - start > 0.0001):
self.ax.get_xaxis().set_view_interval(start + ((end - start) / 4)
, end - ((end - start) / 4), True)
print "Before draw"
self.fig.canvas.draw()
print "Before Qt"
QtGui.qApp.processEvents();
@QtCore.pyqtSignature("")
def zoomOut(self):
"""
Увеньшает в 2 раза
"""
self.stopButtonAction = True
while self.stopButtonAction:
start, end = self.ax.get_xaxis().get_view_interval()
self.ax.get_xaxis().set_view_interval(start - ((end - start) / 2)
, end + ((end - start) / 2), True)
self.fig.canvas.draw()
QtGui.qApp.processEvents();
@QtCore.pyqtSignature("")
def panLeft(self):
"""
Сдвигаем на 1/10
"""
self.stopButtonAction = True
while self.stopButtonAction:
start, end = self.ax.get_xaxis().get_view_interval()
interval = (end - start) / 10
self.ax.get_xaxis().set_view_interval(start - interval
, end - interval, True)
self.fig.canvas.draw()
QtGui.qApp.processEvents();
@QtCore.pyqtSignature("")
def panRight(self):
self.stopButtonAction = True
while self.stopButtonAction:
start, end = self.ax.get_xaxis().get_view_interval()
interval = (end - start) / 10
self.ax.get_xaxis().set_view_interval(start + interval
, end + interval, True)
self.fig.canvas.draw()
QtGui.qApp.processEvents();
@QtCore.pyqtSignature("")
def stopAction(self):
self.stopButtonAction = False
class MyWindow(QtGui.QWidget):
def __init__(self):
QtGui.QWidget.__init__(self)
# initial consts
self.window_initialize_logger()
self.Rw = 0.01
self.angle_i_dec = 45
self.z = 1000
self.ro = 1300
self.ro_k = 2300
self.nu_k = 0.35
self.phi_k_dec = 44
self.C0_k = 25000000
self.pw = self.ro * 9.81 * self.z
self.sigma_v = stress_sign*self.ro_k * 9.81 * self.z
self.sigma_H = self.nu_k / (1 - self.nu_k) * self.sigma_v
self.fcriteria = FailureCriteria(RO_MIN, 777)
r_grid, theta_grid = np.meshgrid(r_vector, theta_vector)
# размерность сетки # 100, 25
gridShape = r_grid.shape
self.cur_section_cyl = self.window_calculate_section(id, (self.angle_i_dec * np.pi / 180), 0, self.pw,
self.sigma_H, self.sigma_H, self.sigma_v,
r_vector, theta_vector, gridShape, Rw,
self.z, self.nu_k)
# self.cur_section_cyl = cur_section_cyl
self.m = Monitor(self.cur_section_cyl)
self.create_ui()
self.updateView()
@QtCore.pyqtSignature("")
def startAction(self):
logging.info("============Start action============")
self.updateView()
logging.info("z: "+str(self.z))
logging.info("pw: "+str(self.pw))
logging.info("i : " + str(self.angle_i_dec))
logging.info("ro: "+str(self.ro))
id = 777
r_grid, theta_grid = np.meshgrid(r_vector, theta_vector)
# размерность сетки # 100, 25
gridShape = r_grid.shape
self.cur_section_cyl = self.window_calculate_section(id, self.angle_i_dec * np.pi / 180, 0, self.pw,
self.sigma_H, self.sigma_H, self.sigma_v,
r_vector, theta_vector, gridShape, Rw,
self.z, self.nu_k)
self.m.updatePlot(self.cur_section_cyl)
def window_initialize_logger(self):
logger = logging.getLogger()
logger.setLevel(log_level)
# create console handler and set level to info
handler = logging.StreamHandler()
handler.setLevel(log_level)
formatter = logging.Formatter("%(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
# create error file handler and set level to error
handler = logging.FileHandler("output/form_qt_error.log")
handler.setLevel(logging.ERROR)
handler.setFormatter(formatter)
logger.addHandler(handler)
# create debug file handler and set level to info
handler = logging.FileHandler("output/form_qt.log")
handler.setLevel(log_level)
handler.setFormatter(formatter)
logger.addHandler(handler)
def window_calculate_section(self, j, i, a, pw, sigma_H, sigma_h, sigma_v, r_vector, theta_vector, gridShape, Rw, z, nu):
# главное напряжение в данной точке
logging.info("s_0:")
s_0 = self.window_rotate_general_stress_dec_mtx(a, i, sigma_H, sigma_h, sigma_v)
logging.info(s_0.getMtx33())
logging.info("\ttrace comparison: "+str(s_0.getTrace()-(sigma_H+sigma_h+sigma_v)))
# logging.info("printStressDec")
# массивы для каждого компонента напряжения для каждой точки
# размерности gridShape как r_grid, theta_grid
s_r_data = np.zeros(gridShape)
s_theta_data = np.zeros(gridShape)
s_z_data = np.zeros(gridShape)
t_r_theta_data = np.zeros(gridShape)
t_theta_z_data = np.zeros(gridShape)
t_r_z_data = np.zeros(gridShape)
currentGeneralStressListInPoint = []
# массив StressCyl объектов для проверки критериев
stressAtWell = []
# проходим сначала по радиусам, затем по углам
# rc индекс текущего радиуса, r текущий радиус
# thetac индекс текущего угла, theta текущий угол
for rc, r in enumerate(r_vector):
for thetac, theta in enumerate(theta_vector):
# значения тензора напряжения в этой точке
currentStressCyl = calculate_stress_cyl(Rw, nu, pw, r, theta, s_0)
if r == Rw:
stressAtWell.append(currentStressCyl)
s_r_data[thetac][rc] = currentStressCyl.s_r
s_theta_data[thetac][rc] = currentStressCyl.s_theta
s_z_data[thetac][rc] = currentStressCyl.s_z
t_r_theta_data[thetac][rc] = currentStressCyl.t_r_theta
t_theta_z_data[thetac][rc] = currentStressCyl.t_theta_z
t_r_z_data[thetac][rc] = currentStressCyl.t_r_z
# тип StressCylMas в котором находятся массивы s_r,s_theta,...
# для текущего сечения
curSectionCyl = SectionCyl(s_r_data,
s_theta_data,
s_z_data,
t_r_theta_data,
t_theta_z_data,
t_r_z_data,
i, a, pw, Rw, z, stressAtWell)
return curSectionCyl
def window_rotate_general_stress_dec_mtx(self, a, i, sigma_H, sigma_h, sigma_v):
# a-angle x0x' i-angle z0z'
lxx = np.cos(a) * np.cos(i)
lyx = -np.sin(a)
lzx = np.cos(a) * np.sin(i)
lxy = np.sin(a) * np.cos(i)
lyy = np.cos(a)
lzy = np.sin(a) * np.sin(i)
lxz = -np.sin(i)
lyz = 0
lzz = np.cos(i)
s_x = lxx ** 2 * sigma_H + lxy ** 2 * sigma_h + lxz ** 2 * sigma_v
s_y = lyx ** 2 * sigma_H + lyy ** 2 * sigma_h + lyz ** 2 * sigma_v
s_z = lzx ** 2 * sigma_H + lzy ** 2 * sigma_h + lzz ** 2 * sigma_v
t_x_y = lxx * lyx * sigma_H + lxy * lyy * sigma_h + lxz * lyz * sigma_v
t_y_z = lyx * lzx * sigma_H + lyy * lzy * sigma_h + lyz * lzz * sigma_v
t_x_z = lzx * lxx * sigma_H + lzy * lxy * sigma_h + lzz * lxz * sigma_v
#a,b
# a = a
# b = i
# rotate_mtx = np.matrix([
# [np.sin(b)**2,np.cos(b)**2 * np.cos(a)**2,np.cos(b)**2 * np.sin(a)**2],
# [0,np.sin(a)**2,np.cos(a)**2],
# [np.cos(b)**2,np.sin(b)**2 * np.cos(a)**2,np.sin(b)**2*np.sin(a)**2],
# [0, -np.sin(a)*np.cos(a)* np.sin(b), np.sin(a)*np.cos(a)*np.sin(b)],
# [-np.sin(b)*np.cos(b),np.sin(b)*np.cos(b)*np.cos(a)**2,np.sin(b)*np.cos(b)*np.sin(a)**2],
# [0,-np.sin(a)*np.cos(a)*np.cos(b),np.sin(a)*np.cos(a)*np.cos(b)]
# ])
#
# [[s_x], [s_y], [s_z], [t_x_y], [t_y_z], [t_x_z]] = rotate_mtx*[[sigma_v],[sigma_H],[sigma_h]]
return StressDec(
s_x,
s_y,
s_z,
t_y_z,
t_x_z,
t_x_y
)
def window_calculate_stress_cyl_at_well(self,nu, pw, theta, s_0):
# s_x_0, s_y_0, s_z_0, t_yz_0, t_xz_0, t_xy_0
s_x_0 = float(s_0.s_x)
s_y_0 = float(s_0.s_y)
s_z_0 = float(s_0.s_z)
t_yz_0 = float(s_0.t_y_z)
t_xz_0 = float(s_0.t_x_z)
t_xy_0 = float(s_0.t_x_y)
s_r = float(pw)
s_theta = s_x_0 + s_y_0 - 2 * (s_x_0 - s_y_0) * np.cos(2 * theta) - t_xy_0 * np.sin(2 * theta) - pw
s_z = s_z_0 - nu * (2 * (s_x_0 - s_y_0) * np.cos(2 * theta) + 4 * t_xy_0 * np.sin(2 * theta))
t_r_theta = 0
t_theta_z = 2 * (-1 * t_xz_0 * np.sin(theta) + t_yz_0 * np.cos(theta))
t_r_z = 0
# s_r, s_theta, s_z, t_r_theta, t_theta_z, t_r_z
stressCyl = stress_cyl(stress_sign * s_r,
stress_sign * s_theta,
stress_sign * s_z,
stress_sign * t_r_theta,
stress_sign * t_theta_z,
stress_sign * t_r_z)
return stressCyl
def window_calculate_section_at_well(self, j, i, a, pw, sigma_H, sigma_h, sigma_v, r_vector, theta_vector, gridShape, Rw, z, nu):
# главное напряжение в данной точке
s_0 = self.window_rotate_general_stress_dec_mtx(a, i, sigma_H, sigma_h, sigma_v)
# s_0.printStressDec()
# массивы для каждого компонента напряжения для каждой точки
# размерности gridShape как r_grid, theta_grid
# s_r_data = np.zeros(gridShape)
# s_theta_data = np.zeros(gridShape)
# s_z_data = np.zeros(gridShape)
#
# t_r_theta_data = np.zeros(gridShape)
# t_theta_z_data = np.zeros(gridShape)
# t_r_z_data = np.zeros(gridShape)
currentGeneralStressListInPoint = []
# массив StressCyl объектов для проверки критериев
stress_at_well = []
for theta in theta_vector:
currentStressCyl = self.window_calculate_stress_cyl_at_well(nu, pw, theta, s_0)
stress_at_well.append(currentStressCyl)
# тип StressCylMas в котором находятся массивы s_r,s_theta,...
# для текущего сечения
# curSectionCyl = SectionCyl(s_r_data,
# s_theta_data,
# s_z_data,
# t_r_theta_data,
# t_theta_z_data,
# t_r_z_data,
# i, a, pw, Rw, z, stress_at_well)
# return curSectionCyl
return stress_at_well
def updateView(self):
self.angle_i_dec = float(self.angle_i_dec_text.toPlainText())
self.ro_k = float(self.ro_k_text.toPlainText())
self.ro = float(self.ro_text.toPlainText())
self.z = float(self.z_text.toPlainText())
if self.ro_k_text.toPlainText() == "":
self.sigma_v = float(self.sigma_v_text.toPlainText())
self.sigma_H = float(self.sigma_H_text.toPlainText())
else:
# TO DO stress_sign?
self.sigma_v = stress_sign*self.ro_k * 9.81 * self.z
self.sigma_H = self.nu_k / (1 - self.nu_k) * self.sigma_v
# плотность бурового раствора
if not self.ro_text.toPlainText() == "":
self.pw = self.ro * 9.81 * self.z
else:
self.pw = float(self.pw_text.toPlainText())
self.phi_k_dec = float(self.phi_k_text.toPlainText())
self.C0_k = float(self.C0_k_text.toPlainText())
self.pw_text.setPlainText(str(self.pw))
self.sigma_v_text.setPlainText(str(self.sigma_v))
self.sigma_H_text.setPlainText(str(self.sigma_H))
def create_ui(self):
self.setWindowTitle(u'Stress plots in section')
# app = QtGui.QApplication(sys.argv)
self.startButton = QtGui.QPushButton("Start")
self.checkButton = QtGui.QPushButton("check failure")
# self.checkButton.clicked.connect(self.checkAction)
self.angle_i_dec_label = QtGui.QLabel("i = ")
self.angle_i_dec_text = QtGui.QPlainTextEdit()
self.angle_i_dec_text.setPlainText(str(self.angle_i_dec))
self.angle_i_dec_text.setFixedHeight(25)
self.angle_i_dec_text.setFixedWidth(100)
self.sigma_v_label = QtGui.QLabel("\tsigma_v = ")
self.sigma_H_label = QtGui.QLabel("\tsigma_H = ")
self.sigma_v_text = QtGui.QPlainTextEdit()
self.sigma_v_text.setPlainText(str(self.sigma_v))
self.sigma_v_text.setFixedHeight(25)
self.sigma_v_text.setFixedWidth(150)
self.sigma_H_text = QtGui.QPlainTextEdit()
self.sigma_H_text.setPlainText(str(self.sigma_H))
self.sigma_H_text.setFixedHeight(25)
self.sigma_H_text.setFixedWidth(150)
self.ro_k_label = QtGui.QLabel("\tro_k = ")
self.ro_k_text = QtGui.QPlainTextEdit()
self.ro_k_text.setPlainText(str(self.ro_k))
self.ro_k_text.setFixedHeight(25)
self.ro_k_text.setFixedWidth(150)
self.phi_k_label = QtGui.QLabel("\tphi_k = ")
self.phi_k_text= QtGui.QPlainTextEdit()
self.phi_k_text.setPlainText(str(self.phi_k_dec))
self.phi_k_text.setFixedHeight(25)
self.phi_k_text.setFixedWidth(150)
self.C0_k_label = QtGui.QLabel("\tC0_k = ")
self.C0_k_text= QtGui.QPlainTextEdit()
self.C0_k_text.setPlainText(str(self.C0_k))
self.C0_k_text.setFixedHeight(25)
self.C0_k_text.setFixedWidth(150)
self.pw_label = QtGui.QLabel("\tpw = ")
self.pw_text = QtGui.QPlainTextEdit()
self.pw_text.setPlainText(str(self.pw))
self.pw_text.setFixedHeight(25)
self.pw_text.setFixedWidth(150)
self.z_label = QtGui.QLabel("z = ")
self.z_text = QtGui.QPlainTextEdit()
self.z_text.setFixedHeight(25)
self.z_text.setFixedWidth(35)
self.z_text.setPlainText(str(self.z))
self.ro_label = QtGui.QLabel("ro = ")
self.ro_text = QtGui.QPlainTextEdit()
self.ro_text.setFixedHeight(25)
self.ro_text.setFixedWidth(35)
self.ro_text.setPlainText(str(self.ro))
self.scrollbar = QtGui.QScrollBar()
# layout = QtGui.QVBoxLayout()
layout = QtGui.QGridLayout()
layout.setSpacing(10)
layout.addWidget(self.startButton, 0, 0)
layout.addWidget(self.checkButton, 0, 1)
layout.addWidget(self.angle_i_dec_label, 1, 0)
layout.addWidget(self.angle_i_dec_text, 1, 1)
layout.addWidget(self.sigma_v_label, 1, 2)
layout.addWidget(self.sigma_H_label, 2, 2)
layout.addWidget(self.sigma_v_text, 1, 3)
layout.addWidget(self.sigma_H_text, 2, 3)
layout.addWidget(self.ro_k_label, 1, 4)
layout.addWidget(self.ro_k_text, 1, 5)
layout.addWidget(self.phi_k_label, 2, 4)
layout.addWidget(self.phi_k_text, 2, 5)
layout.addWidget(self.C0_k_label, 3, 4)
layout.addWidget(self.C0_k_text, 3, 5)
layout.addWidget(self.pw_label, 3, 2)
layout.addWidget(self.pw_text, 3, 3)
layout.addWidget(self.z_label, 2, 0)
layout.addWidget(self.z_text, 2, 1)
layout.addWidget(self.ro_label, 3, 0)
layout.addWidget(self.ro_text, 3, 1)
layout.addWidget(self.m, 4, 1, 5, 5)
# w.show()
self.setLayout(layout)
self.show()
QtCore.QObject.connect(self.startButton, QtCore.SIGNAL("pressed()"), self.startAction)
QtCore.QObject.connect(self.checkButton, QtCore.SIGNAL("pressed()"), self.checkAction)
@QtCore.pyqtSignature("")
def checkAction(self):
logging.info("check started")
self.startAction()
# r_grid, theta_grid = np.meshgrid(r_vector, theta_vector)
# gridShape = r_grid.shape
# stress_at_well_list = self.window_calculate_section_at_well(777, self.angle_i_dec*np.pi/180, 0, self.pw,
# self.sigma_H, self.sigma_H, self.sigma_v,
# r_vector, theta_vector, gridShape,
# Rw, self.z, 0.35)
# stress_at_well_list = self.cur_section_cyl.stress_at_well
# проверка критериями массива напряжений на стенке скважины
# [True True True False False True False False]
# False~Failure
logging.info("general_stress_at_well_list:")
# объект для проверки по критериям
self.fcriteria = FailureCriteria(RO_MIN, 777)
for stress_id, stress_cyl in enumerate(self.cur_section_cyl.stress_at_well):
logging.info(str(stress_id)+": "+stress_cyl.getGeneralStressStr())
logging.info("\ttrace comparison: "+str(stress_cyl.getTrace()-stress_cyl.get_gstress_trace()))
logging.info("-------------------------------")
# проверяем по каждому критерию текующую точку и прибавляем к листу ответов по сечению
self.fcriteria.check_gstress_at_section(stress_cyl.getGeneralStress(),
self.phi_k_dec * np.pi / 180,
self.C0_k)
# logging.info(self.fcriteria.check_gstress_at_section(stress_cyl.getGeneralStress(), self.phi_k_dec*np.pi/180, self.C0_k))
# logging.info("\t\t\tplot saved: "+str(stress_id)+".png")
sigma3, sigma2, sigma1 = stress_cyl.getGeneralStress()
plot_failure_criteria(stress_id, sigma3, sigma2, sigma1, self.phi_k_dec*np.pi/180, self.C0_k)
logging.info("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
# logging.info("stress_cyl.getGeneralStressMtx()")
# logging.info(stress_cyl.getGeneralStressMtx())
logging.info("criterion_ans_at_section:")
logging.info(self.fcriteria.ans_list)
# fcriteria = FailureCriteria(RO_MAX, 777)
# fcriteria_ans = fcriteria.check_section(self.cur_section_cyl.stress_at_well, self.ro, 777,
# self.phi_k_dec * np.pi / 180, self.C0_k)
# logging.info(fcriteria_ans)
# print(get_min_ro_in_section(777, self.angle_i_dec, 0, self.sigma_H, self.sigma_H, self.sigma_v,
# r_vector, theta_vector, gridShape,
# Rw, self.z, self.nu_k, self.phi_k, self.C0_k))
if __name__=='__main__':
app = QtGui.QApplication(sys.argv)
widget = MyWindow()
widget.setGeometry(50,100, 1000,600)
widget.show()
sys.exit(app.exec_())