-
Notifications
You must be signed in to change notification settings - Fork 55
/
run.py
282 lines (256 loc) · 8.32 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Apache Software License 2.0
#
# Copyright (c) ZenML GmbH 2024. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from pathlib import Path
# Suppress the specific FutureWarning from huggingface_hub
warnings.filterwarnings(
"ignore", category=FutureWarning, module="huggingface_hub.file_download"
)
import logging
from rich.console import Console
from rich.markdown import Markdown
from utils.llm_utils import process_input_with_retrieval
from zenml.logger import get_logger
# Next, configure the loggers right after the imports
logging.getLogger("pytorch").setLevel(logging.CRITICAL)
logging.getLogger("sentence-transformers").setLevel(logging.CRITICAL)
logging.getLogger("rerankers").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
logging.getLogger().setLevel(logging.ERROR) # Root logger configuration
# Continue with the rest of your imports and code
from typing import Optional
import click
from constants import OPENAI_MODEL
from materializers.document_materializer import DocumentMaterializer
from pipelines import (
finetune_embeddings,
generate_chunk_questions,
generate_synthetic_data,
llm_basic_rag,
llm_eval,
rag_deployment,
llm_index_and_evaluate,
)
from structures import Document
from zenml.materializers.materializer_registry import materializer_registry
from zenml import Model
logger = get_logger(__name__)
@click.command(
help="""
ZenML LLM Complete Guide project CLI v0.1.0.
Run the ZenML LLM RAG complete guide project pipelines.
"""
)
@click.argument(
"pipeline",
type=click.Choice(
[
"rag",
"deploy",
"evaluation",
"query",
"synthetic",
"embeddings",
"chunks",
"basic_rag",
]
),
required=True,
)
@click.option(
"--model",
"model",
type=click.Choice(
[
"gpt4",
"gpt35",
"claude3",
"claudehaiku",
]
),
required=False,
default="gpt4",
help="The model to use for the completion.",
)
@click.option(
"--zenml-model-name",
"zenml_model_name",
default="zenml-docs-qa-chatbot",
required=False,
help="The name of the ZenML model to use.",
)
@click.option(
"--zenml-model-version",
"zenml_model_version",
required=False,
default=None,
help="The name of the ZenML model version to use.",
)
@click.option(
"--no-cache",
"no_cache",
is_flag=True,
default=False,
help="Disable cache.",
)
@click.option(
"--argilla",
"use_argilla",
is_flag=True,
default=False,
help="Uses Argilla annotations.",
)
@click.option(
"--reranked",
"use_reranker",
is_flag=True,
default=False,
help="Whether to use the reranker.",
)
@click.option(
"--config",
"config",
default=None,
help="Path to config",
)
def main(
pipeline: str,
query_text: Optional[str] = None,
model: str = OPENAI_MODEL,
zenml_model_name: str = "zenml-docs-qa-chatbot",
zenml_model_version: str = None,
no_cache: bool = False,
use_argilla: bool = False,
use_reranker: bool = False,
config: Optional[str] = None,
):
"""Main entry point for the pipeline execution.
Args:
pipeline (str): The pipeline to execute (rag, deploy, evaluation, etc.)
query_text (Optional[str]): Query text when using 'query' command
model (str): The model to use for the completion
zenml_model_name (str): The name of the ZenML model to use
zenml_model_version (str): The name of the ZenML model version to use
no_cache (bool): If True, cache will be disabled
use_argilla (bool): If True, Argilla an notations will be used
use_reranker (bool): If True, rerankers will be used
config (Optional[str]): Path to config file
"""
pipeline_args = {"enable_cache": not no_cache}
embeddings_finetune_args = {
"enable_cache": not no_cache,
"steps": {
"prepare_load_data": {
"parameters": {"use_argilla_annotations": use_argilla}
}
},
}
# Read the model version from a file in the root of the repo
# called "ZENML_VERSION.txt".
if zenml_model_version == "staging":
postfix = "-rc0"
elif zenml_model_version == "production":
postfix = ""
else:
postfix = "-dev"
if Path("ZENML_VERSION.txt").exists():
with open("ZENML_VERSION.txt", "r") as file:
zenml_model_version = file.read().strip()
zenml_model_version += postfix
else:
raise RuntimeError(
"No model version file found. Please create a file called ZENML_VERSION.txt in the root of the repo with the model version."
)
# Create ZenML model
zenml_model = Model(
name=zenml_model_name,
version=zenml_model_version,
license="Apache 2.0",
description="RAG application for ZenML docs",
tags=["rag", "finetuned", "chatbot"],
limitations="Only works for ZenML documentation. Not generalizable to other domains. Entirely build with synthetic data. The data is also quite noisy on account of how the chunks were split.",
trade_offs="Focused on a specific RAG retrieval use case. Not generalizable to other domains.",
audience="ZenML users",
use_cases="RAG retrieval",
)
# Handle config path
config_path = None
if config:
config_path = Path(__file__).parent / "configs" / config
# Set default config paths based on pipeline
if not config_path:
config_mapping = {
"basic_rag": "dev/rag.yaml",
"rag": "dev/rag.yaml",
"evaluation": "dev/rag_eval.yaml",
"synthetic": "dev/synthetic.yaml",
"embeddings": "dev/embeddings.yaml",
}
if pipeline in config_mapping:
config_path = (
Path(__file__).parent / "configs" / config_mapping[pipeline]
)
# Execute query
if pipeline == "query":
if not query_text:
raise click.UsageError(
"--query-text is required when using 'query' command"
)
response = process_input_with_retrieval(
query_text, model=model, use_reranking=use_reranker
)
console = Console()
md = Markdown(response)
console.print(md)
return
# Execute the appropriate pipeline
if pipeline == "basic_rag":
llm_basic_rag.with_options(
model=zenml_model, config_path=config_path, **pipeline_args
)()
# Also deploy if config is provided
if config:
rag_deployment.with_options(
config_path=config_path, **pipeline_args
)()
if pipeline == "rag":
llm_index_and_evaluate.with_options(
model=zenml_model, config_path=config_path, **pipeline_args
)()
elif pipeline == "deploy":
rag_deployment.with_options(model=zenml_model, **pipeline_args)()
elif pipeline == "evaluation":
pipeline_args["enable_cache"] = False
llm_eval.with_options(model=zenml_model, config_path=config_path)()
elif pipeline == "synthetic":
generate_synthetic_data.with_options(
model=zenml_model, config_path=config_path, **pipeline_args
)()
elif pipeline == "embeddings":
finetune_embeddings.with_options(
model=zenml_model, config_path=config_path, **embeddings_finetune_args
)()
elif pipeline == "chunks":
generate_chunk_questions.with_options(
model=zenml_model, config_path=config_path, **pipeline_args
)()
if __name__ == "__main__":
# use custom materializer for documents
# register early
materializer_registry.register_materializer_type(
Document, DocumentMaterializer
)
main()