Skip to content

Arijitdutta19910601/Content-Based-Movie-Recommendation-System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

MovieRecommendation

Link to the Web Page: http://webpages.uncc.edu/~snagiset/cloudreport.html

Instructions to run the code:

Content based recommendation system: $ mkdir pagerank_classes javac -cp /usr/lib/hadoop/:/usr/lib/hadoop-mapreduce/ FinalContent.java -d pagerank_classes -Xlint jar -cvf recom.jar -C pagerank_classes/ . hadoop jar recom.jar org.myorg.FinalContent /user/vkundula/input1(movies.csv) /user/vkundula/input2(ratings.csv) The final output will be in collaboutput6

Collaborative based recommendation system: $ mkdir pagerank_classes javac -cp /usr/lib/hadoop/:/usr/lib/hadoop-mapreduce/ FinalCollaborative.java -d pagerank_classes -Xlint jar -cvf recom.jar -C pagerank_classes/ . hadoop jar recom.jar org.myorg.FinalCollaborative /user/vkundula/input(ratings.csv) The final output will be in contentoutput6

Hybrid: $ mkdir pagerank_classes javac -cp /usr/lib/hadoop/:/usr/lib/hadoop-mapreduce/ Hybrid.java -d pagerank_classes -Xlint jar -cvf recom.jar -C pagerank_classes/ . hadoop jar recom.jar org.myorg.Hybrid /user/vkundula/input1(contentoutput.txt) /user/vkundula/input2(collaborativeoutput.txt) /user/vkundula/output

Notes: All the output files have been provided with the submission All the other details have been provided in the webpage

Dataset: The dataset used is movielens dataset with over 1 million data items

Framework used: we used Hadoop MapReduce for the project

Fun thing about project: It is very interesting to know how we generally get the recommendations in idbm and netflix with the help of this project

About

Content Based Movie Recommendation System

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages