Skip to content

DataScienceWorks/kaggle-past-time-series-competition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 

Repository files navigation

Review of kaggle time series competition

Inspired by Learnings from Kaggle’s Forecasting Competitions by Casper Solheim Bojer & Jens Peder Meldgaard in 2020, I surveyed the top 3 solutions in the past kaggle time series competitions since 2014 to 2023.

Table of Contents

List of competitions

# Year Title Data size
1 2014 Walmart Recruiting - Store Sales Forecasting 3.22MB
2 2015 Walmart Recruiting II: Sales in Stormy Weather 9MB
3 2015 Rossmann Store Sales 39.85MB
4 2016 Predicting Red Hat Business Value 26.74MB
5 2017 Web Traffic Time Series Forecasting 611.85MB
6 2018 TalkingData AdTracking Fraud Detection Challenge 11.27GB
7 2018 Corporación Favorita Grocery Sales Forecasting 479.88MB
8 2018 Recruit Restaurant Visitor Forecasting 27.3MB
9 2018 Google Analytics Customer Revenue Prediction 35.9GB
10 2019 LANL Earthquake Prediction 10.42GB
11 2019 Two Sigma: Using News to Predict Stock Movements Not available
12 2019 ASHRAE - Great Energy Predictor III 2.61GB
13 2020 University of Liverpool - Ion Switching 146.08MB
14 2020 M5 Forecasting - Accuracy 450.47MB
15 2020-2021 Jane Street Market Prediction Not available
16 2020-2021 Acea Smart Water Analytics 3.45MB
17 2021 Google Brain - Ventilator Pressure Prediction 698.79MB
18 2022 Optiver Realized Volatility Prediction 2.73GB
19 2022 G-Research Crypto Forecasting 3.12GB
20 2022 Ubiquant Market Prediction 18.55GB
21 2022 American Express - Default Prediction 50.31 GB
22 2022-2023 GoDaddy - Microbusiness Density Forecasting 10.93 MB

Top 3 most voted EDAs

To learn the characteristic of data given in each competition, EDA is one of the best way.
So top 3 most voted EDAs are listed.

> Go to the top

  1. EDA and Store Sales Predictions using XGB
  2. Walmart prediction - (1) EDA with time and space
  3. Wallmart Sales - EDA - feat eng [Future Update]

> Go to the top

NA

> Go to the top

  1. Time Series Analysis and Forecasts with Prophet
  2. EDA and forecasting with RFRegressor_FINAL_UPDATED
  3. How Does New Competition Affect Sales?

> Go to the top

  1. Time Travel (EDA)
  2. Redhat EDA
  3. RedHat Hack in plain English (EDA)

> Go to the top

  1. Wiki Traffic Forecast Exploration - WTF EDA
  2. Web Traffic Time Series Forecasting (EDA)
  3. Wikipedia Web traffic EDA

> Go to the top

  1. TalkingData EDA plus time patterns
  2. TalkingData EDA and Class Imbalance
  3. TalkingData: EDA to Model Evaluation | LB: 0.9683

> Go to the top

  1. Shopping for Insights - Favorita EDA
  2. Memory optimization and EDA on entire dataset
  3. Grocery EDA Dirty XGBoost, Arima,ETS,Prophet

> Go to the top

  1. Be my guest - Recruit Restaurant EDA
  2. Exhaustive Weather EDA/File Overview
  3. Recruit Restaurant EDA

> Go to the top

  1. R EDA for GStore + GLM + KERAS + XGB
  2. Google Analytics EDA + LightGBM + Screenshots
  3. A Very Extensive GStore Exploratory Analysis

> Go to the top

  1. Earthquakes FE. More features and samples
  2. LANL Earthquake EDA and Prediction
  3. Masters Final Project: EDA

> Go to the top

  1. EDA, feature engineering and everything
  2. 👨‍🔬 Bird Eye 👀 view of Two Sigma + NN Approach
  3. Simple EDA - Two Sigma

> Go to the top

  1. 🔌⚡ASHRAE -Start Here: A GENTLE Introduction
  2. EDA for ASHRAE
  3. A deep dive EDA into ALL variables

> Go to the top

  1. Ion Switching Competition : Signal EDA 🧪
  2. EDA - Ion Switching
  3. Simple EDA-Model

> Go to the top

  1. Back to (predict) the future - Interactive M5 EDA
  2. M5 Competition : EDA + Models 📈
  3. Time Series Forecasting-EDA, FE & Modelling📈

> Go to the top

  1. Jane Street: EDA of day 0 and feature importance
  2. Jane_street_Extensive_EDA & PCA starter 📊⚡
  3. EDA / A Quant's Prespective

> Go to the top

  1. Acea Smart Water: Full EDA & Prediction
  2. EDA: Quenching the Thirst for Insights
  3. Quick EDA | Reporting & Data Understanding

> Go to the top

  1. Ventilator Pressure Prediction: EDA, FE and models
  2. 🔥EDA +FE+TabNet 🧠🧠[Weights and Biases]
  3. Ventilator Pressure: EDA and simple submission

> Go to the top

  1. Optiver Realized: EDA for starter(English version)
  2. Optiver Realized Volatility Prediction - EDA
  3. Optiver; EDA XGBoost starter(日本語,Japanese)

> Go to the top

  1. 📊 G-Research Plots + EDA 📊
  2. To The Moon 🚀 [G-Research Crypto Forecasting EDA]
  3. 📈📊[G-crypto] Interactive Dashboard + Indicators

> Go to the top

  1. EDA- target analysis
  2. Ubiquant EDA and Baseline
  3. 🔥The most advanced analytics🔥

> Go to the top

  1. AMEX EDA which makes sense ⭐️⭐️⭐️⭐️⭐️
  2. AMEX Default Prediction EDA & LGBM Baseline
  3. American Express EDA

> Go to the top

  1. TBD
  2. TBD
  3. TBD

Top 3 solutions

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 💻 🔊
2 NA 🔊
3 💻 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 Lasso - - 💻 🔊
2 - - - NA NA
3 - - - NA NA

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 NA 🔊
2 NA NA
3 💻 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 NA 🔊
2 NA 🔊
3 NA 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 💻 🔊
2 💻 🔊
3 💻 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 NA 🔊
2 NA 🔊
3 NA 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 💻

💻
🔊
2 NA 🔊
3 NA 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 LightGBM - - 💻

💻
NA
2 - - - NA NA
3 - - - NA NA

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 💻 🔊
2 NA 🔊
3 - - - NA NA

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 💻

💻
🔊
2 NA 🔊
3 NA 🔊

> Go to the top

NA

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 CatBoost

LightGBM

MLP
NA 🔊
2 XGBoost

LightGBM

Catboost

Feed-forward Neural Network
NA 🔊
3 CNN

LightGBM

Catboost
NA 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 NA 🔊
2 💻 🔊

🔊
3 NA 🔊

🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 LightGBM NA 💻
2 LightGBM NA 💻
3 DeepAR NA 💻

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 XGBoost

NN
💻 NA
3 49 layers MLPs No 15 ensembles of NN NA 🔊

NA for Pos #2

> Go to the top

NA

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 LSTM

Transformer
single architecture KFold 💻 🔊
2 Stacked LSTM ensembled by 7 models KFold NA 🔊
3 Conv1d

Stacked LSTM
random seed average Stratified K-Folds NA 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 LightGBM

MLP

CNN
equally weighd average GroupKFold 💻 🔊
3 LightGBM

MLP

TabNet
equally weighd average KFold 💻 🔊

NA for Pos #2

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 - - - - NA NA
2 LightGBM Single model NA 🔊
3 LightGBM Single model 💻 💻 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 LightGBM

TABNET
Average of (LGBM x 5 Folds) + (TABNET x 5 Folds) PurgedGroupTimeSeries

TimeSerieseSplit

KFold
NA 🔊
2 LightGBM - Purged K-FOLD cross validation with embargo NA 🔊
3 6 layers transformer 5 seeds ensemble - NA 🔊

> Go to the top

Pos Methods    FE       Ensemble       Split       Code Discussion
1 LightGBM

GRU
Ensembled by 4 models 💻 🔊
2 LGB/XGB/CTB

NN
NA 🔊
3 LGB/CTB Ensembled by 3 models NA 🔊

> Go to the top

Ongoing

Pos Methods    FE       Ensemble       Split       Code Discussion
1
2
3

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published