Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Complete transition away from auto-tests #100

Merged
merged 21 commits into from
Oct 5, 2024
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 0 additions & 25 deletions test/auto_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -71,39 +71,14 @@ end
ẑ(T) = Vec(T(0), T(0), T(1))
plane_xy(T) = Plane(origin3d(T), ẑ(T))

# Points on xy-plane at unit distance on axes
pt_n(T) = Point(T(0), T(1), T(0))
pt_w(T) = Point(T(-1), T(0), T(0))
pt_e(T) = Point(T(1), T(0), T(0))

# Test Geometries
ball2d(T) = Ball(origin2d(T), T(2.0))
ball3d(T) = Ball(origin3d(T), T(2.0))
circle(T) = Circle(plane_xy(T), T(2.5))
cyl(T) = Cylinder(pt_e(T), pt_w(T), T(2.5))
cylsurf(T) = CylinderSurface(pt_e(T), pt_w(T), T(2.5))
disk(T) = Disk(plane_xy(T), T(2.5))
parab(T) = ParaboloidSurface(origin3d(T), T(2.5), T(4.15))
sphere2d(T) = Sphere(origin2d(T), T(2.5))
sphere3d(T) = Sphere(origin3d(T), T(2.5))
tetra(T) = Tetrahedron(pt_n(T), pt_w(T), pt_e(T), pt_n(T) + ẑ(T))
triangle(T) = Ngon(pt_e(T), pt_n(T), pt_w(T))
torus(T) = Torus(origin3d(T), ẑ(T), T(3.5), T(1.25))

SUPPORT_MATRIX(T) = [
# Name, T type, example, integral,line,surface,volume, GaussLegendre,GaussKronrod,HAdaptiveCubature
SupportItem("Ball{2,$T}", T, ball2d(T), 1, 0, 1, 0, 1, 1, 1),
SupportItem("Ball{3,$T}", T, ball3d(T), 1, 0, 0, 1, 1, 0, 1),
SupportItem("Circle{$T}", T, circle(T), 1, 1, 0, 0, 1, 1, 1),
SupportItem("Cylinder{$T}", T, cyl(T), 1, 0, 0, 1, 1, 0, 1),
SupportItem("CylinderSurface{$T}", T, cylsurf(T), 1, 0, 1, 0, 1, 1, 1),
SupportItem("Disk{$T}", T, disk(T), 1, 0, 1, 0, 1, 1, 1),
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
SupportItem("ParaboloidSurface{$T}", T, parab(T), 1, 0, 1, 0, 1, 1, 1),
SupportItem("Sphere{2,$T}", T, sphere2d(T), 1, 1, 0, 0, 1, 1, 1),
SupportItem("Sphere{3,$T}", T, sphere3d(T), 1, 0, 1, 0, 1, 1, 1),
SupportItem("Tetrahedron", T, tetra(T), 1, 0, 0, 1, 0, 1, 0),
SupportItem("Triangle{$T}", T, triangle(T), 1, 0, 1, 0, 1, 1, 1),
SupportItem("Torus{$T}", T, torus(T), 1, 0, 1, 0, 1, 1, 1)
]

@testset "Float64 Geometries" verbose=true begin
Expand Down
258 changes: 258 additions & 0 deletions test/combinations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,33 @@
# - All supported combinations of integral(f, ::Geometry, ::IntegrationAlgorithm) produce accurate results
# - Invalid applications of integral aliases (e.g. lineintegral) produce a descriptive error

@testitem "Meshes.Ball 2D" setup=[Setup] begin
origin = Point(0, 0)
ball = Ball(origin, 2.8)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(ball)
@test integral(f, ball, GaussLegendre(100)) ≈ sol
@test integral(f, ball, GaussKronrod()) ≈ sol
@test integral(f, ball, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, ball, GaussLegendre(100)) ≈ vsol
@test integral(fv, ball, GaussKronrod()) ≈ vsol
@test integral(fv, ball, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, ball)
@test surfaceintegral(f, ball) ≈ sol
@test_throws "not supported" volumeintegral(f, ball)
end



@testitem "Meshes.BezierCurve" setup=[Setup] begin
curve = BezierCurve(
[Point(t * u"m", sin(t) * u"m", 0.0u"m") for t in range(-pi, pi, length = 361)]
Expand All @@ -19,8 +46,31 @@
@test integral(f, curve, GaussKronrod())≈sol rtol=0.5e-2
@test integral(f, curve, HAdaptiveCubature())≈sol rtol=0.5e-2

# Vector integrand
vsol = fill(sol, 3)@testitem "Meshes.Ball 3D" setup=[Setup] begin
origin = Point(0, 0, 0)
ball = Ball(origin, 2.8)

f = p -> one(Float64)
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(ball)
@test integral(f, ball, GaussLegendre(100)) ≈ sol
@test_throws "not supported" integral(f, ball, GaussKronrod()) ≈ sol
@test integral(f, ball, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, ball, GaussLegendre(100)) ≈ vsol
@test_throws "not supported" integral(fv, ball, GaussKronrod()) ≈ vsol
@test integral(fv, ball, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, ball)
@test_throws "not supported" surfaceintegral(f, ball)
@test volumeintegral(f, ball) ≈ sol
end
@test integral(fv, curve, GaussLegendre(100))≈vsol rtol=0.5e-2
@test integral(fv, curve, GaussKronrod())≈vsol rtol=0.5e-2
@test integral(fv, curve, HAdaptiveCubature())≈vsol rtol=0.5e-2
Expand Down Expand Up @@ -196,6 +246,58 @@ end
@test_throws "not supported" volumeintegral(f, cone)
end

@testitem "Meshes.Cylinder" setup=[Setup] begin
pt_w = Point(-1, 0, 0)
pt_e = Point(1, 0, 0)
cyl = Cylinder(pt_e, pt_w, 2.5)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(cyl)
@test integral(f, cyl, GaussLegendre(100)) ≈ sol
@test_throws "not supported" integral(f, cyl, GaussKronrod())
@test integral(f, cyl, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, cyl, GaussLegendre(100)) ≈ vsol
@test_throws "not supported" integral(fv, cyl, GaussKronrod())
@test integral(fv, cyl, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, cyl)
@test_throws "not supported" surfaceintegral(f, cyl)
@test volumeintegral(f, cyl) ≈ sol
end

@testitem "Meshes.CylinderSurface" setup=[Setup] begin
pt_w = Point(-1, 0, 0)
pt_e = Point(1, 0, 0)
cyl = CylinderSurface(pt_e, pt_w, 2.5)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(cyl)
@test integral(f, cyl, GaussLegendre(100)) ≈ sol
@test integral(f, cyl, GaussKronrod()) ≈ sol
@test integral(f, cyl, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, cyl, GaussLegendre(100)) ≈ vsol
@test integral(fv, cyl, GaussKronrod()) ≈ vsol
@test integral(fv, cyl, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, cyl)
@test surfaceintegral(f, cyl) ≈ sol
@test_throws "not supported" volumeintegral(f, cyl)
end

@testitem "Meshes.FrustumSurface" setup=[Setup] begin
# Create a frustum whose radius halves at the top,
# i.e. the bottom half of a cone by height
Expand Down Expand Up @@ -265,6 +367,31 @@ end
@test_throws "not supported" volumeintegral(f, line)
end

@testitem "Meshes.ParaboloidSurface" setup=[Setup] begin
origin = Point(0, 0, 0)
parab = ParaboloidSurface(origin, 2.5, 4.15)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(parab)
@test integral(f, parab, GaussLegendre(100)) ≈ sol
@test integral(f, parab, GaussKronrod()) ≈ sol
@test integral(f, parab, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, parab, GaussLegendre(100)) ≈ vsol
@test integral(fv, parab, GaussKronrod()) ≈ vsol
@test integral(fv, parab, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, parab)
@test surfaceintegral(f, parab) ≈ sol
@test_throws "not supported" volumeintegral(f, parab)
end

@testitem "Meshes.Plane" setup=[Setup] begin
p = Point(0.0u"m", 0.0u"m", 0.0u"m")
v = Vec(0.0u"m", 0.0u"m", 1.0u"m")
Expand Down Expand Up @@ -449,3 +576,134 @@ end
@test_throws "not supported" surfaceintegral(f, segment)
@test_throws "not supported" volumeintegral(f, segment)
end

@testitem "Meshes.Sphere 2D" setup=[Setup] begin
origin = Point(0, 0)
sphere = Sphere(origin, 4.4)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(sphere)
@test integral(f, sphere, GaussLegendre(100)) ≈ sol
@test integral(f, sphere, GaussKronrod()) ≈ sol
@test integral(f, sphere, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, sphere, GaussLegendre(100)) ≈ vsol
@test integral(fv, sphere, GaussKronrod()) ≈ vsol
@test integral(fv, sphere, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test lineintegral(f, sphere) ≈ sol
@test_throws "not supported" surfaceintegral(f, sphere)
@test_throws "not supported" volumeintegral(f, sphere)
end

@testitem "Meshes.Sphere 3D" setup=[Setup] begin
origin = Point(0, 0, 0)
sphere = Sphere(origin, 4.4)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(sphere)
@test integral(f, sphere, GaussLegendre(100)) ≈ sol
@test integral(f, sphere, GaussKronrod()) ≈ sol
@test integral(f, sphere, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, sphere, GaussLegendre(100)) ≈ vsol
@test integral(fv, sphere, GaussKronrod()) ≈ vsol
@test integral(fv, sphere, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, sphere)
@test surfaceintegral(f, sphere) ≈ sol
@test_throws "not supported" volumeintegral(f, sphere)
end

@testitem "Meshes.Tetrahedron" setup=[Setup] begin
pt_n = Point(0, 1, 0)
pt_w = Point(-1, 0, 0)
pt_e = Point(1, 0, 0)
ẑ = Vec(0, 0, 1)
tetrahedron = Tetrahedron(pt_n, pt_w, pt_e, pt_n + ẑ)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(tetrahedron)
@test_throws "not supported" integral(f, tetrahedron, GaussLegendre(100))
@test integral(f, tetrahedron, GaussKronrod()) ≈ sol
@test_throws "not supported" integral(f, tetrahedron, HAdaptiveCubature())

# Vector integrand
vsol = fill(sol, 3)
@test_throws "not supported" integral(fv, tetrahedron, GaussLegendre(100))≈vsol
@test integral(fv, tetrahedron, GaussKronrod()) ≈ vsol
@test_throws "not supported" integral(fv, tetrahedron, HAdaptiveCubature())≈vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, tetrahedron)
@test_throws "not supported" surfaceintegral(f, tetrahedron)
@test volumeintegral(f, tetrahedron, GaussKronrod()) ≈ sol
end

@testitem "Meshes.Torus" setup=[Setup] begin
origin = Point(0, 0, 0)
ẑ = Vec(0, 0, 1)
torus = Torus(origin, ẑ, 3.5, 1.25)

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(torus)
@test integral(f, torus, GaussLegendre(100)) ≈ sol
@test integral(f, torus, GaussKronrod()) ≈ sol
@test integral(f, torus, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, torus, GaussLegendre(100)) ≈ vsol
@test integral(fv, torus, GaussKronrod()) ≈ vsol
@test integral(fv, torus, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, torus)
@test surfaceintegral(f, torus) ≈ sol
@test_throws "not supported" volumeintegral(f, torus)
end

@testitem "Meshes.Triangle" setup=[Setup] begin
pt_n = Point(0, 1, 0)
pt_w = Point(-1, 0, 0)
pt_e = Point(1, 0, 0)
triangle = Ngon(pt_e, pt_n, pt_w)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved

f = p -> one(Float64)
mikeingold marked this conversation as resolved.
Show resolved Hide resolved
fv(p) = fill(f(p), 3)

# Scalar integrand
sol = Meshes.measure(triangle)
@test integral(f, triangle, GaussLegendre(100)) ≈ sol
@test integral(f, triangle, GaussKronrod()) ≈ sol
@test integral(f, triangle, HAdaptiveCubature()) ≈ sol

# Vector integrand
vsol = fill(sol, 3)
@test integral(fv, triangle, GaussLegendre(100)) ≈ vsol
@test integral(fv, triangle, GaussKronrod()) ≈ vsol
@test integral(fv, triangle, HAdaptiveCubature()) ≈ vsol

# Integral aliases
@test_throws "not supported" lineintegral(f, triangle)
@test surfaceintegral(f, triangle) ≈ sol
@test_throws "not supported" volumeintegral(f, triangle)
end
Loading