- test with text detection:
- no detection: 0.0580617875394309 s/img
- has detection: 0.07414934519306778 s/img
- ->deviant: 0.016089 s/img
- -> USE DETECTION
- Change port to localhost:8400
- Test with only recognition model paddle.
- Inference time with 1 plate:
- Only recognition model: ~0.05s
- Use PaddleOCR interface: ~0.07s
- crop plate into 2 parts -> ocr time decreases 0.25s -> 0.05~0.1s (because ocr model doesn't detect text)
- OCR Time: 0.05 ~ 0.1s
- Total time in one image: ~0.2s
- Time by call API to server: ~0.25s (client and server in the same device , i5 8250, run on cpu)
- add api, default run on localhost:8100
- add function to test on video. Change path of video and see the result
- Plate detection from
openvino
, inference time: 0.05 second/ image - Plate OCR from
PaddleOCR
, inference time (including plate detection): 0.28 second/ image
- B -> 3: because glare
Use: python app.py
Url: http://127.0.0.1:8400/plate/
var client = new RestClient("http://0.0.0.0:8400/plate/");
client.Timeout = -1;
var request = new RestRequest(Method.POST);
request.AddParameter("name_cam", "");
request.AddFile("image", "path_of_image");
IRestResponse response = client.Execute(request);
Console.WriteLine(response.Content);
Input:
- name_cam: str
- image: file
-
Success
{ "code": 200, "plate_text": "12-B3 456.78", "msg": "success" }
-
Fail
{ "code": 201, # error "error_code": 0, "msg": "error message" }