Skip to content

Commit

Permalink
transferfunction: Add conv2d
Browse files Browse the repository at this point in the history
  • Loading branch information
SamKG committed Feb 28, 2021
1 parent 6ba882e commit c7d5dc5
Show file tree
Hide file tree
Showing 3 changed files with 166 additions and 1 deletion.
136 changes: 135 additions & 1 deletion psyneulink/core/components/functions/transferfunctions.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
from psyneulink.core.globals.keywords import \
ADDITIVE_PARAM, ALL, BIAS, EXPONENTIAL_FUNCTION, \
GAIN, GAUSSIAN_DISTORT_FUNCTION, GAUSSIAN_FUNCTION, HAS_INITIALIZERS, HOLLOW_MATRIX, \
IDENTITY_FUNCTION, IDENTITY_MATRIX, INTERCEPT, LEAK, LINEAR_FUNCTION, LINEAR_MATRIX_FUNCTION, LOGISTIC_FUNCTION, \
IDENTITY_FUNCTION, IDENTITY_MATRIX, INTERCEPT, LEAK, LINEAR_FUNCTION, CONV2D_FUNCTION, LINEAR_MATRIX_FUNCTION, LOGISTIC_FUNCTION, \
TANH_FUNCTION, MATRIX_KEYWORD_NAMES, MATRIX, MATRIX_KEYWORD_VALUES, MAX_INDICATOR, MAX_VAL, MULTIPLICATIVE_PARAM, \
OFF, OFFSET, ON, PER_ITEM, PROB, PRODUCT, OUTPUT_TYPE, PROB_INDICATOR, \
RATE, RECEIVER, RELU_FUNCTION, SCALE, SLOPE, SOFTMAX_FUNCTION, STANDARD_DEVIATION, SUM,\
Expand Down Expand Up @@ -482,6 +482,140 @@ def _is_identity(self, context=None):
)


# **********************************************************************************************************************
# Conv2d
# **********************************************************************************************************************

class Conv2d(TransferFunction): # -------------------------------------------------------------------------------------
componentName = CONV2D_FUNCTION

class Parameters(TransferFunction.Parameters):
kernel = Parameter(np.array([[0]]), modulable=True)
stride = Parameter((1, 1), modulable=False)
padding = Parameter((0, 0), modulable=False)
dilation = Parameter((1, 1), modulable=False)

@tc.typecheck
def __init__(self,
default_variable=None,
kernel=None,
stride=None,
padding=None,
dilation=None,
params=None,
owner=None,
prefs: tc.optional(is_pref_set) = None):

super().__init__(
default_variable=default_variable,
kernel=kernel,
stride=stride,
padding=padding,
dilation=dilation,
params=params,
owner=owner,
prefs=prefs,
)

def _gen_llvm_function_body(self, ctx, builder, params, state, arg_in, arg_out, *, tags:frozenset):
# Pretend we have one huge array to work on
# TODO: should this be invoked in parts?
assert isinstance(arg_in.type.pointee, pnlvm.ir.ArrayType)

kernel_ptr = pnlvm.helpers.get_param_ptr(builder, self, params, "kernel")
stride_ptr = pnlvm.helpers.get_param_ptr(builder, self, params, "stride")
padding_ptr = pnlvm.helpers.get_param_ptr(builder, self, params, "padding")
dilation_ptr = pnlvm.helpers.get_param_ptr(builder, self, params, "dilation")

height, width = arg_in.type.pointee.count, arg_in.type.pointee.element.count
kernel_height, kernel_width = kernel_ptr.type.pointee.count, kernel_ptr.type.pointee.element.count
# result shape should have been determined
result_height, result_width = arg_out.type.pointee.count, arg_out.type.pointee.element.count

# zero arg_out
builder.store(arg_out.type.pointee(None), arg_out)

# dereference padding
padding_x = builder.fptoui(builder.load(builder.gep(padding_ptr, [ctx.int32_ty(0), ctx.int32_ty(0)])), ctx.int32_ty)
padding_y = builder.fptoui(builder.load(builder.gep(padding_ptr, [ctx.int32_ty(0), ctx.int32_ty(1)])), ctx.int32_ty)

# dereference stride
stride_x = builder.fptoui(builder.load(builder.gep(stride_ptr, [ctx.int32_ty(0), ctx.int32_ty(0)])), ctx.int32_ty)
stride_y = builder.fptoui(builder.load(builder.gep(stride_ptr, [ctx.int32_ty(0), ctx.int32_ty(1)])), ctx.int32_ty)

# dereference dilation
dilation_x = builder.fptoui(builder.load(builder.gep(dilation_ptr, [ctx.int32_ty(0), ctx.int32_ty(0)])), ctx.int32_ty)
dilation_y = builder.fptoui(builder.load(builder.gep(dilation_ptr, [ctx.int32_ty(0), ctx.int32_ty(1)])), ctx.int32_ty)

def _get_variable_idx(builder, x, y):
val_ptr = builder.alloca(ctx.float_ty)
x_padding_top = builder.icmp_unsigned('<', x, padding_x)
x_padding_bottom = builder.icmp_unsigned('>=', x, builder.add(ctx.int32_ty(height), padding_x))
y_padding_left = builder.icmp_unsigned('<', y, padding_y)
y_padding_right = builder.icmp_unsigned('>=', y, builder.add(ctx.int32_ty(width), padding_y))
pred = builder.or_(x_padding_top, x_padding_bottom)
pred2 = builder.or_(y_padding_left, y_padding_right)
pred = builder.or_(pred, pred2)
with builder.if_else(pred) as (then, otherwise):
with then:
# in padding zone
builder.store(ctx.float_ty(-0.0), val_ptr)
with otherwise:
x = builder.sub(x, padding_x)
y = builder.sub(y, padding_y)
var_ptr = builder.gep(arg_in, [ctx.int32_ty(0), x, y])
builder.store(builder.load(var_ptr), val_ptr)
return val_ptr

with pnlvm.helpers.for_loop_zero_inc(builder, ctx.int32_ty(result_height), "result_height") as (builder, h):
with pnlvm.helpers.for_loop_zero_inc(builder, ctx.int32_ty(result_width), "result_width") as (builder, w):
with pnlvm.helpers.for_loop_zero_inc(builder, ctx.int32_ty(kernel_height), "kernel_height") as (builder, k_h):
with pnlvm.helpers.for_loop_zero_inc(builder, ctx.int32_ty(kernel_width), "kernel_width") as (builder, k_w):
i_x = builder.add(builder.mul(k_h, dilation_x), builder.mul(stride_x, h))
i_y = builder.add(builder.mul(k_w, dilation_y), builder.mul(stride_y, w))
variable_ptr = _get_variable_idx(builder, i_x, i_y)
var = builder.load(variable_ptr)
kernel_ptr = builder.gep(kernel_ptr, [ctx.int32_ty(0), k_h, k_w])
kernel = builder.load(kernel_ptr)
result_ptr = builder.gep(arg_out, [ctx.int32_ty(0), h, w])
res = builder.load(result_ptr)

builder.store(builder.fadd(res, builder.fmul(var, kernel)), result_ptr)

return builder

def _function(self,
variable=None,
context=None,
params=None,
):
kernel = self._get_current_parameter_value("kernel", context)
stride = self._get_current_parameter_value("stride", context)
padding = self._get_current_parameter_value("padding", context)
dilation = self._get_current_parameter_value("dilation", context)

height, width = variable.shape
kernel_height, kernel_width = kernel.shape

result_height = int(np.floor(((height + 2 *padding[0] - dilation[0] *(kernel_height - 1) - 1) / stride[0]) + 1))
result_width = int(np.floor(((width + 2 *padding[1] - dilation[1] *(kernel_width - 1) - 1) / stride[1]) + 1))

result = np.zeros((result_height, result_width))

# apply padding
variable = np.pad(variable, [(padding[0], padding[0]), (padding[1], padding[1])])

for h in range(result_height):
for w in range(result_width):
# apply kernel op.
for k_h in range(0, kernel_height):
i_x = k_h * dilation[0] + stride[0] * h
for k_w in range(0, kernel_width):
i_y = k_w * dilation[1] + stride[1] * w
result[h][w] += kernel[k_h][k_w] * variable[i_x][i_y]

return self.convert_output_type(result)

# **********************************************************************************************************************
# Exponential
# **********************************************************************************************************************
Expand Down
1 change: 1 addition & 0 deletions psyneulink/core/globals/keywords.py
Original file line number Diff line number Diff line change
Expand Up @@ -549,6 +549,7 @@ def _is_metric(metric):
# TransferFunctions:
IDENTITY_FUNCTION = 'Identity Function'
LINEAR_FUNCTION = "Linear Function"
CONV2D_FUNCTION = "Conv2d Function"
LEABRA_FUNCTION = "Leabra Function"
EXPONENTIAL_FUNCTION = "Exponential Function"
LOGISTIC_FUNCTION = "Logistic Function"
Expand Down
30 changes: 30 additions & 0 deletions tests/functions/test_transfer.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,36 @@ def test_execute_derivative(func, variable, params, expected, benchmark, mode):
benchmark(ex, variable)


@pytest.mark.function
@pytest.mark.transfer_function
@pytest.mark.pytorch
@pytest.mark.benchmark
@pytest.mark.parametrize("variable, kernel, stride, padding, dilation, expected", [
(np.ones((2, 2)), np.ones((2, 2)), (1,1), (0,0), (1,1), np.array([[4.]])),
(np.array([[1,2],[3,4]]), np.array([[1]]), (1,1), (0,0), (1,1), np.array([[1., 2.], [3., 4.]])),
(np.ones((4, 3)), np.ones((1, 3)), (1,1), (0,0), (1,1), np.array([[3.], [3.], [3.], [3.]])),
(np.ones((4, 3)), np.ones((1, 3)), (1,1), (0,0), (2,1), np.array([[3.], [3.], [3.], [3.]])),
(np.ones((4, 3)), np.ones((1, 3)), (2,1), (0,0), (1,1), np.array([[3.], [3.]])),
(np.ones((4, 3)), np.ones((1, 3)), (1,1), (1,1), (1,1), np.array([[0., 0., 0.], [2., 3., 2.], [2., 3., 2.], [2., 3., 2.], [2., 3., 2.], [0., 0., 0.]])),
])
@pytest.mark.parametrize("mode", [
'Python',
pytest.param('LLVM', marks=pytest.mark.llvm),
pytest.param('PTX', marks=[pytest.mark.llvm, pytest.mark.cuda])])
def test_conv2d(variable, kernel, stride, padding, dilation, benchmark, mode, expected):
f = Functions.Conv2d(default_variable=variable, kernel=kernel, stride=stride, padding=padding, dilation=dilation)
benchmark.group = "TransferFunction Conv2d"
if mode == 'Python':
ex = f
elif mode == 'LLVM':
ex = pnlvm.execution.FuncExecution(f).execute
elif mode == 'PTX':
ex = pnlvm.execution.FuncExecution(f).cuda_execute
res = ex(variable)
assert np.allclose(res, expected)
if benchmark.enabled:
benchmark(ex, variable)

def test_transfer_with_costs_function():
f = Functions.TransferWithCosts()
result = f(1)
Expand Down

0 comments on commit c7d5dc5

Please sign in to comment.